ProofSpace Problem Set

Proof Techniques

Direct Proofs and Counterexamples

Discussed Problems

For each of the following, prove or disprove. If a biconditional is false, prove or disprove each direction.

- 1 Let a, b, and c be integers.
 - a) If $a \mid b$ and $b \mid c$, then $a \mid c$.
 - b) If $a \mid bc$, then $a \mid b$ or $a \mid c$.
 - c) If $ab \mid c$, then $a \mid c$ and $b \mid c$.
 - d) If $a \mid b$ and $a \mid c$, then $a \mid b + c$.
- **2** Let x be an integer.
 - a) If x is odd, then $x^2 + 2x + 7$ is even.
 - b) If $x^2 + x$ is even, then x is even.
 - c) If x is odd, then $8 \mid 4x^2 + 12$.
 - d) If 3x + 1 is odd, then $9x^2 + 6x + 1$ is even.
- **3** Let x and y be real numbers.
 - a) x is rational if and only if xy is rational.
 - b) If x is rational, then x^2 is rational.
- 4 Let n be a natural number. If a is an integer, then $a \equiv a \pmod{n}$.

This is called the **reflexive property**. Note that we have already seen that congruence modulo n satisfies the **symmetric property**:

For all integers a and b, if $a \equiv b \pmod{n}$, then $b \equiv a \pmod{n}$.

Evaluated Problems

For each of the following, prove or disprove. If a biconditional is false, prove or disprove each direction.

- **1** Let a, b, and c be integers.
 - a) If $a \mid b + c$, then $a \mid b$ or $a \mid c$.
 - b) If $a \mid b$ and $a \mid c$, then $a \mid xb + yc$ for any integers x and y.
 - c) Suppose a is positive. If $a \mid b$ and $a \mid b + 1$, then a = 1.
- **2** Let x be an integer.
 - a) If x is odd, then $x^2 + 2x + 1$ is even.
 - b) If x + 4 is odd, then $x^2 + 7x + 12$ is even.
- **3** Let x and y be real numbers. Then, x is rational if and only if x + y is rational.

4 Let n be a natural number. Then congruence modulo n satisfies the **transitive property**:

For all integers a, b, and c, if $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$.

Supplemental Problems

Mathematical Reasoning: Writing and Proof, Online Version 2.0, by Ted Sundstrom: Sec. 3.1: 1, 2, 3, 5, 7, 9, 10, 11, 12, 19

Advanced Problems

An integer p is **prime** if $(a \mid p) \Rightarrow (a = \pm 1) \lor (a = \pm p)$.

Let a be an integer. If $3 \mid a^2$, then $3 \mid a$. (We will soon have the tools to prove this.)

1 Find all primes p such that p + 1 is a perfect cube.

2 The Number Theoretic Troll (NTT) gives you a number whose digits are 3000 0's and 3000 1's in some order.

- a) The NTT says the number is prime. Is he telling the truth or lying?
- b) The NTT says the number is a perfect square. Is he telling the truth or lying?