ProofSpace Problem Set

Proof Techniques

Conditionals with Disjunctions (Proof by Cases or Elimination)

Discussed Problems

1 Suppose $x \in \mathbb{R}$. Using a proof by elimination, prove that if $x = x^2$, then x = 0 or x = 1.

2 Consider the following theorem and the start of its proof:

Theorem: There are no rational numbers x such that $x^3 + x + 1 = 0$.

Proof: Suppose for the sake of contradiction that there is a rational number p such that $p^3 + p + 1 = 0$. Since p is rational, there exist integers a and b where $b \neq 0$ such that $p = \frac{a}{b}$ and a and b have no common factors. Thus, $(\frac{a}{b})^3 + \frac{a}{b} + 1 = 0$. Multiplying both sides of the equation by b^3 , we get that $a^3 + ab^2 + b^3 = 0$.

We shall complete the proof.

- a) What happens in the case where a is odd and b is even?
- b) What happens in the case where a is even and b is odd?
- c) What happens in the case where a is odd and b is odd?
- d) Are there any other cases to consider? Why or why not?
- **3** Using a proof by cases, prove that if a is an integer, then $2 \mid a^2 + 3a$.
- 4 Using a proof by cases, prove that if a is an integer, then $3 \mid a^3 + 23a$.

Evaluated Problems

1 Let x be a real number. Using a proof by elimination, prove that if $x^2 - 5x + 6 \ge 0$, then $x \le 2$ or $x \ge 3$.

2 Prove the following statement: If n is an odd integer, then $8 \mid n^2 - 1$.

3 Prove the following statement: There do not exist positive integers x and y such that $x^2 - y^2 = 1$. HINT: Recall that if a and b are integers such that ab = 1, then a = b = 1 or a = b = -1.

4 Let *a* and *b* be integers. Prove the following statement: If $ab \not\equiv 0 \pmod{6}$, then $a \not\equiv 0 \pmod{6}$ and $b \not\equiv 0 \pmod{6}$. (We examined the converse of this in the previous assignment.)

- 5 Let a and b be integers. If $3 \mid a^2 + b^2$, then $3 \mid a$.
 - a) Why does it make sense to use an indirect proof technique to prove this statement?
 - b) What are the cases you would use to prove this?
 - c) The algebra involved is similar among the cases. Submit the proof for two of the cases.

Supplemental Problems

Mathematical Reasoning: Writing and Proof, Online Version 2.0, by Ted Sundstrom: Sec. 3.4: 3, 5, 10, 12, 13

Advanced Problems

A number p is **irreducible** if $a \mid p \Rightarrow (a = \pm 1 \lor a = \pm p)$.

A number p is **prime** if $p \mid ab \Rightarrow (p \mid a \lor p \mid b)$.

- 1 In this problem, we will consider how to prove two definitions are equivalent.
 - a) Suppose you wanted to prove $(P \Rightarrow Q) \iff (R \Rightarrow M)$. What would you assume?
 - b) Prove that if an integer is prime, it is irreducible. HINT: Recall that if $a \mid b$ and $b \mid a$, then $b = \pm a$.

There do exist settings wherein prime and irreducible are not equivalent definitions. We leave such examples for a future course in number theory.

2 Suppose you wanted to write a computer program to find out if some positive integer p greater than two was prime. One way to do this would be is as follows:

- i) Let r := 2.
- ii) Check if $r \mid p$.
- iii) (a) If $r \mid p$, STOP. Conclude that p is not prime.
 - (b) If $r \nmid p$, then set r := r + 1.
- iv) (a) If r < p, return to step ii).
 - (b) If r = p, STOP. Conclude that p is prime.

Interpreting this algorithm, we essentially test if any number greater than 1 but less than p is a factor of p. Notice that this means checking p-2 numbers. Is there a way to determine whether or not p is prime by checking fewer numbers?