ProofSpace Problem Set

Functions

Introduction

Discussed Problems

1 (Sundstrom) Let d be the function that associates with each natural number the number of its natural number divisors. That is, $d : \mathbb{N} \to \mathbb{N}$ where d(n) is the number of natural number divisors of n. For example, d(6) = 4 since 1, 2, 3, and 6 are the natural divisors of 6.

- a) Calculate d(k) for each natural number k from 1 through 12.
- b) Does there exist a natural number n such that d(n) = 1? What is $d^{-1}[\{1\}]$?
- c) Does there exist a natural number n such that d(n) = 2? What is $d^{-1}[\{2\}]$?
- d) Is the following statement true or false? Explain your reasoning.

For all $m, n \in \mathbb{N}$, if $m \neq n$, then $d(m) \neq d(n)$.

- e) Calculate $d(2^k)$ for all natural numbers k from 1 through 6.
- f) Make a conjecture for a formula for $d(2^n)$ for any natural n. Explain your reasoning.
- g) Is the following statement true or false? Explain your reasoning.

For any $m \in \mathbb{N}$, there exists an $n \in \mathbb{N}$ such that d(n) = m.

2 (Quadratic Formula) Let P_2 be the set of all polynomials of the form $ax^2 + bx + c$ where a, b, and c are real numbers.

- a) (Review) What are the roots of $x^2 + 2x + 1$ (that is, for which x does $x^2 + 2x + 1 = 0$?)
- b) What are the roots of $x^2 + 3x + 2$?
- c) What are the roots of $x^2 2$?
- d) Suppose *roots* is a function that inputs an element of P_2 and outputs the set of its roots. What is an appropriate codomain Y we could use to define this function $roots: P_2 \rightarrow Y$?

- **3** (Multivariable Functions) Let $f : \mathbb{N} \times \mathbb{Z} \to \mathbb{R}$ be given by $f(x, y) = x^y$.
 - a) What is f(2,2)? What is f(1,2)? f(2,-1)?
 - b) What is $f^{-1}[\{1\}]$?
 - c) What is the range of f?

4 Let $f: S \to T$. Let A and B be subsets of S, and let C be a subset of T. Prove or disprove the following. For false biconditional statements, is one of the conditionals true?

- a) $A \subseteq B \iff f[A] \subseteq f[B].$
- b) $f[A \cup B] = f[A] \cup f[B].$
- c) $f[f^{-1}[C]] = C$.

Evaluated Problems

1 (Sundstrom) Let S be the function that associates with each natural number the set of its natural number divisors. For example, $S(6) = \{1, 2, 3, 6\}$ and $S(10) = \{1, 2, 5, 10\}$.

- a) What is the domain of S? Determine an appropriate codomain of S.
- b) Determine S(n) for three prime and four composite values of n.
- c) Does there exist a natural number n such that S(n) has only one element? Explain your reasoning.
- d) Does there exist a natural number n such that S(n) has exactly two elements? Explain your reasoning.
- e) Is the following statement true or false? Explain your reasoning.

For all $m, n \in \mathbb{N}$, if $m \neq n$, then $S(m) \neq S(n)$.

f) Is the following statement true or false? Explain your reasoning.

For any $T \subseteq \mathbb{N}$, there exists an $n \in \mathbb{N}$ such that S(n) = T.

2 (Derivatives) Let P_3 be the set of all polynomials of the form $ax^3 + bx^2 + cx + d$ where $a, b, c, d \in \mathbb{R}$.

- a) (Review) What is the derivative of $4x^3 + 2x^2 + 3x + 8$?
- b) Think of derivative as a function $d: P_3 \to P_3$. What is $d(3x^3 + 9x^2 + 2x + 4)$?
- c) What is $d^{-1}[\{2x^2 + 2x + 2\}]?$

- d) What is $d^{-1}[\{3x^3+4\}]?$
- e) What is the range of d?
- f) Does it make sense to think of derivatives of elements of P_3 as a function $der : \mathbb{R}^4 \to \mathbb{R}^4$ given by der(a, b, c, d) = (0, 3a, 2b, c). Why or why not?
- **3** (Multivariable Functions) Let $f : \mathbb{N} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ be given by f(x, y) = (x + y, xy).
 - a) What is f(2,2)? What is f(1,2)? f(2,-1)?
 - b) What is $f^{-1}[\{(z, 1) \mid z \in \mathbb{Z}\}]$? Why?
 - c) Suppose (z, 1) is in the range of f. What can you conclude about z?
 - d) What is $f^{-1}[\{(z,0) \mid z \in \mathbb{Z}\}]$ Why?

4 Let $f: S \to T$ be a function. Suppose A and B be subsets of S, and C and D be subsets of T.

- a) Prove that $C \subseteq D \implies f^{-1}[C] \subseteq f^{-1}[D]$. Provide a counterexample to show that the converse is false.
- b) Prove that $f[A] f[B] \subseteq f[A B]$. Provide a counterexample to show that $f[A - B] \not\subseteq f[A] - f[B]$.
- c) Prove that $A \subseteq f^{-1}[f[A]]$. Provide a counterexample to show that $f^{-1}[f[A]] \not\subseteq A$. Notice that this means, in general, $f^{-1}[f[A]] \neq A$.
- d) Suppose S = T and that S is the universal set. Show that $f[A^c] \neq f[A]^c$ by showing that neither set is a subset of the other. (Both can be shown with a single counterexample, although this is not required.)

Supplemental Problems

Mathematical Reasoning: Writing and Proof, Online Version 2.0, by Ted Sundstrom: Sec. 6.1: 1, 2, 3, 5 Sec. 6.2: 1, 2, 3, 5, 7, 8, 9, 10

Advanced Problems

- **1** Suppose $f: A \to B$ and $g: A \to B$. Let $k \in B$. Define the following:
 - i) $f + g : A \to B$ given by (f + g)(x) = f(x) + g(x).
 - ii) $f \cdot g : A \to B$ given by $(f \cdot g)(x) = (f(x))(g(x))$.
 - iii) $kf : A \to B$ given by (kf)(x) = k(f(x)).

Now, let $f : \mathbb{R} \to \mathbb{R}$ and let $g : \mathbb{R} \to \mathbb{R}$. Let $k \in \mathbb{R}$. Give an example of each of the following, where neither f nor g is a constant function, or prove that one cannot exist:

- a) Functions f and g such that (f+g)(x) = 0.
- b) A function f and real numbers k and q such that kf(x) = q.
- c) Let $q \in \mathbb{R}$. Functions f and g such that $(f \cdot g)(x) = q$.

2 Let A be a nonempty set, and let $\mathbb{R}^{\dagger} = \{x \in \mathbb{R} \mid x \geq 0\}$. Suppose $x, y, z \in A$. A *metric* on A is a function $d : A \times A \to \mathbb{R}^{\dagger}$ with the following properties:

- i) d(x, y) = 0 if and only if x = y.
- ii) d(x, y) = d(y, x).
- iii) $d(x, z) \le d(x, y) + d(y, z)$ (triangle inequality)

We might think of a metric as a "distance" between two points.

- a) Let A be nonempty. Define the **discrete metric** d on A as follows: d(x, y) = 0 if x = y and d(x, y) = 1 otherwise. Verify that d is a metric.
- b) Recall that $|x| : \mathbb{R} \to \mathbb{R}$ is defined to be $|x| = \sqrt{x^2}$. The function d(x, y) = |x y| is a metric on \mathbb{R} . Verify that |x| fills properties i) and ii) above.
- c) The **Euclidean metric** on \mathbb{R}^2 is given by $d((x_1, y_1), (x_2, y_2)) = \sqrt{(x_1 x_2)^2 + (y_1 y_2)^2}$. Verify that the Euclidean metric fills properties i) and ii) above.
- d) Suppose that the codomain of a metric d was defined to be \mathbb{R} instead of \mathbb{R}^{\dagger} . Use the properties of a metric to prove that the range of d would still be \mathbb{R}^{\dagger} .

A set B equipped with a metric d is called a **metric space**. Metric spaces are especially important in topology and real analysis, since the notion of "convergence" is well-defined in any metric space.