ProofSpace Problem Set

Functions

Introduction

Discussed Problems

1 (Sundstrom) Let d be the function that associates with each natural number the number of its natural number divisors. That is, $d: \mathbb{N} \rightarrow \mathbb{N}$ where $d(n)$ is the number of natural number divisors of n. For example, $d(6)=4$ since $1,2,3$, and 6 are the natural divisors of 6 .
a) Calculate $d(k)$ for each natural number k from 1 through 12.
b) Does there exist a natural number n such that $d(n)=1$? What is $d^{-1}[\{1\}]$?
c) Does there exist a natural number n such that $d(n)=2$? What is $d^{-1}[\{2\}]$?
d) Is the following statement true or false? Explain your reasoning.

$$
\text { For all } m, n \in \mathbb{N} \text {, if } m \neq n \text {, then } d(m) \neq d(n) \text {. }
$$

e) Calculate $d\left(2^{k}\right)$ for all natural numbers k from 1 through 6 .
f) Make a conjecture for a formula for $d\left(2^{n}\right)$ for any natural n. Explain your reasoning.
g) Is the following statement true or false? Explain your reasoning.

$$
\text { For any } m \in \mathbb{N} \text {, there exists an } n \in \mathbb{N} \text { such that } d(n)=m \text {. }
$$

2 (Quadratic Formula) Let P_{2} be the set of all polynomials of the form $a x^{2}+b x+c$ where a, b, and c are real numbers.
a) (Review) What are the roots of $x^{2}+2 x+1$ (that is, for which x does $x^{2}+2 x+1=0$?)
b) What are the roots of $x^{2}+3 x+2$?
c) What are the roots of $x^{2}-2$?
d) Suppose roots is a function that inputs an element of P_{2} and outputs the set of its roots. What is an appropriate codomain Y we could use to define this function roots : $P_{2} \rightarrow Y$?

3 (Multivariable Functions) Let $f: \mathbb{N} \times \mathbb{Z} \rightarrow \mathbb{R}$ be given by $f(x, y)=x^{y}$.
a) What is $f(2,2)$? What is $f(1,2)$? $f(2,-1)$?
b) What is $f^{-1}[\{1\}]$?
c) What is the range of f ?

4 Let $f: S \rightarrow T$. Let A and B be subsets of S, and let C be a subset of T. Prove or disprove the following. For false biconditional statements, is one of the conditionals true?
a) $A \subseteq B \Longleftrightarrow f[A] \subseteq f[B]$.
b) $f[A \cup B]=f[A] \cup f[B]$.
c) $f\left[f^{-1}[C]\right]=C$.

Evaluated Problems

1 (Sundstrom) Let S be the function that associates with each natural number the set of its natural number divisors. For example, $S(6)=\{1,2,3,6\}$ and $S(10)=\{1,2,5,10\}$.
a) What is the domain of S ? Determine an appropriate codomain of S.
b) Determine $S(n)$ for three prime and four composite values of n.
c) Does there exist a natural number n such that $S(n)$ has only one element? Explain your reasoning.
d) Does there exist a natural number n such that $S(n)$ has exactly two elements? Explain your reasoning.
e) Is the following statement true or false? Explain your reasoning.

$$
\text { For all } m, n \in \mathbb{N} \text {, if } m \neq n \text {, then } S(m) \neq S(n) \text {. }
$$

f) Is the following statement true or false? Explain your reasoning.

$$
\text { For any } T \subseteq \mathbb{N} \text {, there exists an } n \in \mathbb{N} \text { such that } S(n)=T \text {. }
$$

2 (Derivatives) Let P_{3} be the set of all polynomials of the form $a x^{3}+b x^{2}+c x+d$ where $a, b, c, d \in \mathbb{R}$.
a) (Review) What is the derivative of $4 x^{3}+2 x^{2}+3 x+8$?
b) Think of derivative as a function $d: P_{3} \rightarrow P_{3}$. What is $d\left(3 x^{3}+9 x^{2}+2 x+4\right)$?
c) What is $d^{-1}\left[\left\{2 x^{2}+2 x+2\right\}\right]$?
d) What is $d^{-1}\left[\left\{3 x^{3}+4\right\}\right]$?
e) What is the range of d ?
f) Does it make sense to think of derivatives of elements of P_{3} as a function der : $\mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ given by $\operatorname{der}(a, b, c, d)=(0,3 a, 2 b, c)$. Why or why not?

3 (Multivariable Functions) Let $f: \mathbb{N} \times \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ be given by $f(x, y)=(x+y, x y)$.
a) What is $f(2,2)$? What is $f(1,2)$? $f(2,-1)$?
b) What is $f^{-1}[\{(z, 1) \mid z \in \mathbb{Z}\}]$? Why?
c) Suppose $(z, 1)$ is in the range of f. What can you conclude about z ?
d) What is $f^{-1}[\{(z, 0) \mid z \in \mathbb{Z}\}]$ Why?

4 Let $f: S \rightarrow T$ be a function. Suppose A and B be subsets of S, and C and D be subsets of T.
a) Prove that $C \subseteq D \Longrightarrow f^{-1}[C] \subseteq f^{-1}[D]$.

Provide a counterexample to show that the converse is false.
b) Prove that $f[A]-f[B] \subseteq f[A-B]$.

Provide a counterexample to show that $f[A-B] \nsubseteq f[A]-f[B]$.
c) Prove that $A \subseteq f^{-1}[f[A]]$.

Provide a counterexample to show that $f^{-1}[f[A]] \nsubseteq A$.
Notice that this means, in general, $f^{-1}[f[A]] \neq A$.
d) Suppose $S=T$ and that S is the universal set. Show that $f\left[A^{c}\right] \neq f[A]^{c}$ by showing that neither set is a subset of the other. (Both can be shown with a single counterexample, although this is not required.)

Supplemental Problems

Mathematical Reasoning: Writing and Proof, Online Version 2.0, by Ted Sundstrom:
Sec. 6.1: 1, 2, 3, 5
Sec. 6.2: 1, 2, 3, 5, 7, 8, 9, 10

Advanced Problems

1 Suppose $f: A \rightarrow B$ and $g: A \rightarrow B$. Let $k \in B$. Define the following:
i) $f+g: A \rightarrow B$ given by $(f+g)(x)=f(x)+g(x)$.
ii) $f \cdot g: A \rightarrow B$ given by $(f \cdot g)(x)=(f(x))(g(x))$.
iii) $k f: A \rightarrow B$ given by $(k f)(x)=k(f(x))$.

Now, let $f: \mathbb{R} \rightarrow \mathbb{R}$ and let $g: \mathbb{R} \rightarrow \mathbb{R}$. Let $k \in \mathbb{R}$. Give an example of each of the following, where neither f nor g is a constant function, or prove that one cannot exist:
a) Functions f and g such that $(f+g)(x)=0$.
b) A function f and real numbers k and q such that $k f(x)=q$.
c) Let $q \in \mathbb{R}$. Functions f and g such that $(f \cdot g)(x)=q$.

2 Let A be a nonempty set, and let $\mathbb{R}^{\dagger}=\{x \in \mathbb{R} \mid x \geq 0\}$. Suppose $x, y, z \in A$. A metric on A is a function $d: A \times A \rightarrow \mathbb{R}^{\dagger}$ with the following properties:
i) $d(x, y)=0$ if and only if $x=y$.
ii) $d(x, y)=d(y, x)$.
iii) $d(x, z) \leq d(x, y)+d(y, z)$ (triangle inequality)

We might think of a metric as a "distance" between two points.
a) Let A be nonempty. Define the discrete metric d on A as follows: $d(x, y)=0$ if $x=y$ and $d(x, y)=1$ otherwise. Verify that d is a metric.
b) Recall that $|x|: \mathbb{R} \rightarrow \mathbb{R}$ is defined to be $|x|=\sqrt{x^{2}}$. The function $d(x, y)=|x-y|$ is a metric on \mathbb{R}. Verify that $|x|$ fills properties i) and ii) above.
c) The Euclidean metric on \mathbb{R}^{2} is given by $d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$. Verify that the Euclidean metric fills properties i) and ii) above.
d) Suppose that the codomain of a metric d was defined to be \mathbb{R} instead of \mathbb{R}^{\dagger}. Use the properties of a metric to prove that the range of d would still be \mathbb{R}^{\dagger}.

A set B equipped with a metric d is called a metric space. Metric spaces are especially important in topology and real analysis, since the notion of "convergence" is well-defined in any metric space.

