ProofSpace Problem Set

Functions

Injections, Surjections, and Bijections

Discussed Problems

1 (Sundstrom) For each of the following functions, prove or disprove: (i) the function is an injection, (ii) the function is a surjection, and (iii) the function is a bijection.

- a) $f: (\mathbb{R} \{4\}) \to (\mathbb{R} \{3\})$ given by $f(x) = \frac{3x}{x-4}$
- b) $g: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ given by g(a, b) = 2a + b
- c) $h: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ given by h(a, b) = 3a + 6b
- d) $j : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ given by j(m, n) = (2m, m + n)
- e) $k : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ given by k(m, n) = (2m, m+n)

2 Let A be any arbitrary set. Find a bijection from A to A, and prove your function is bijective.

3 Let [0,1] and [2,3] be intervals in \mathbb{R} . Find a bijection from [0,1] to [2,3] and prove that it is a bijection.

4 (Sundstrom) Let $s : \mathbb{N} \to \mathbb{N}$ be a function such that, for each $n \in \mathbb{N}$, s(n) is the sum of the distinct natural number divisors of n. This is the **sum of the divisors function**. Is s an injection? Is s a surjection? Justify your conclusions.

5 Let $f: S \to T$ be a function, and let A and B be subsets of S. Let $C \subseteq T$.

- a) Recall that $f[A \cap B] \subseteq f[A] \cap f[B]$. Prove that if f is an injection, $f[A] \cap f[B] \subseteq f[A \cap B]$.
- b) Recall that $f[f^{-1}[C]] \subseteq C$. Prove that if f is a surjection, $C \subseteq f[f^{-1}[C]]$.

Evaluated Problems

1 For each of the following functions, prove or disprove: (a) the function is an injection, (b) the function is a surjection, and (c) the function is a bijection.

- a) Let $PN^* = \{S \in \mathcal{P}(\mathbb{N}) \mid S \text{ is finite}\}$. That is, PN^* is the set of all finite subsets of \mathbb{N} . Let $f: PN^* \to (\mathbb{N} \cup \{0\})$ be the function defined by letting f(S) be the number of elements in S. For example, $f(\{2, 13, 7, 159\}) = 4$.
- b) $der: \mathbb{Z}^4 \to \mathbb{Z}^3$ given by der(a, b, c, d) = (3a, 2b, c).

2 Let [0,1] and [2,4] be intervals in \mathbb{R} . Find a bijection from [0,1] to [2,4] and prove that it is a bijection.

3 (Sundstrom) Let $d : \mathbb{N} \to \mathbb{N}$, where d(n) is the number of the natural number divisors of n. This is the **number of the divisors function**, which was introduced in the previous problem set. Is d an injection? Is d a surjection? Prove your claims. (Hint: It is highly recommended that you look at the results of Section 4.1 Discussion Problem 1.)

4 Let $f: S \to T$ be a function, and let A be a subset of S. Prove that if f is injective, then $f^{-1}[f[A]] = A$. Compare this to the result of Section 4.1 Evaluated Problem 4(c).

5 Consider the following proof.

Proposition: Let $\mathbb{R}^* = \{x \in \mathbb{R} \mid x \ge 0\}$. Let $f : \mathbb{R} \to \mathbb{R}^*$ be given by $f(x) = e^x$. Then, f is a surjection.

Proof: We will show that he given function f is surjective.

- 1) Let $y \in \mathbb{R}^*$.
- 2) Then, $ln(y) \in \mathbb{R}$.
- 3) Let x = ln(y).
- 4) Then, $f(x) = e^{ln(y)} = y$.
- 5) Thus, for all $y \in \mathbb{R}^*$, there exists an $x \in \mathbb{R}$ such that y = f(x).
- 6) Therefore, f is surjective. **Q.E.D.**

Identify any content-related errors in the proof. If there are none, say so.

Supplemental Problems

Mathematical Reasoning: Writing and Proof, Online Version 2.0, by Ted Sundstrom: Sec. 6.3: 4, 5, 6, 8, 13, 17, 19

Advanced Problems

- **1** In this problem, we will introduce alternate definitions of injection and surjection.
 - a) Recall Discussed Problem 5(a) above. We have proved that the injective condition is sufficient. Now prove that it is necessary. That is, prove f is an injection if and only if $f[A] \cap f[B] \subseteq f[A \cap B]$.
 - b) Recall Discussed Problem 5(b) above. We have proved that the surjective condition is sufficient. Now prove that it is necessary. That is, prove f is a surjection if and only if $C \subseteq f[f^{-1}[C]]$.

2 Recall the definitions from (Functions/Introduction/Advanced Problems/1). Suppose $f: A \to B$ and $g: A \to B$. Let $k \in B$. Define the following:

- i) $f + g : A \to B$ given by (f + g)(x) = f(x) + g(x).
- ii) $f \cdot g : A \to B$ given by $(f \cdot g)(x) = (f(x))(g(x))$.
- iii) $kf : A \to B$ given by (kf)(x) = k(f(x)).

Now, let $f : \mathbb{R} \to \mathbb{R}$ and let $g : \mathbb{R} \to \mathbb{R}$. Let $k \in \mathbb{R}$. Prove or disprove the following.

- a) If f and g are bijections, f + g is a bijection.
- b) If f and g are bijections, $f \cdot g$ is a bijection.
- c) If $k \in \mathbb{R}$, then kf is a bijection.
- d) If $k \in \mathbb{R}$ and $k \neq 0$, then kf is a bijection.