ProofSpace Problem Set

Functions

Composition and Inverses

Discussed Problems

Let A, B, C, and D be arbitrary sets.
1 Let $f: A \rightarrow B, g: B \rightarrow C$ and $h: C \rightarrow D$. Prove that $h \circ(g \circ f)=(h \circ g) \circ f$.

2 Let $f: A \rightarrow B$ and $g: B \rightarrow C$. Prove or disprove:
(a) If $g \circ f$ is a surjection, then g is a surjection.
(b) If g is a surjection, then $g \circ f$ is a surjection.
(c) If $g \circ f$ is an injection, then g is an injection.
(d) If g is an injection, then $g \circ f$ is an injection.

3 (Iterated Functions) Let $f: A \rightarrow A$. For all $n \in \mathbb{N}$, define $f^{1}(x)=f(x)$ and if $n>1$, define $f^{n}(x)=f\left(f^{n-1}(x)\right)$.
(a) Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be given by $g(x)=2 x+1$. Find $g^{n}(x)$ for $1 \leq n \leq 4$.
(b) Make a conjecture for a formula for $g^{n}(x)$.

4 Let $f: A \rightarrow B$ be a bijection. Prove that for all $x \in A,\left(f^{-1} \circ f\right)(x)=x$.

5 Find the inverse functions of the following functions. If the function is not invertible, explain why.
(a) $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\frac{1-2 x}{3}$.
(b) $g: \mathbb{Z} \rightarrow \mathbb{R}$ defined by $g(x)=\frac{1-2 x}{3}$.
(c) $h: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R}$ defined by $h(x, y)=\left(2 y, x^{3}\right)$.

6 Decide if the following statement is true or false and explain why: If $f: A \rightarrow B$ is a bijection and $a \in B$, then $f^{-1}(a)=f^{-1}[\{a\}]$.

Evaluated Problems

Let A, B, and C be arbitrary sets.
1 Suppose $f: A \rightarrow B$ is a bijection. Prove that f^{-1} is a bijection without using the result of Problem 4 below. You are allowed to use the result of Discussion Problem 4.

2 Let $f: A \rightarrow B$ and $g: B \rightarrow C$. Prove or disprove:
(a) If $g \circ f$ is a surjection, then f is a surjection.
(b) If f is a surjection, then $g \circ f$ is a surjection.
(c) If $g \circ f$ is an injection, then f is an injection.
(d) If f is an injection, then $g \circ f$ is an injection.

3 (Iterated Functions) Prove your conjecture from Discussed Problem 3(b) above. HINT: How do you prove something for all $n \in \mathbb{N}$?

4 Let $f: A \rightarrow B$ be a bijection. Prove that for all $y \in B,\left(f \circ f^{-1}\right)(y)=y$.

5 Find the inverse functions of the following functions. If the function is not invertible, explain why.
(a) $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\frac{x^{3}+1}{3}$.
(b) $g: \mathbb{Z} \rightarrow \mathbb{R}$ defined by $g(x)=\frac{x^{3}+1}{3}$.
(c) $h: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R}$ defined by $h(x, y)=(2 x+y, x+y)$.

Supplemental Problems

Mathematical Reasoning: Writing and Proof, Online Version 2.0, by Ted Sundstrom:
Sec. 6.4: 3, 5a, 10.
Sec. 6.5: 3(a,b), 4, 6, 7, 8, 9

Advanced Problems

1 Let A and B be sets with more than one element. The function $\operatorname{proj}_{A}: A \times B \rightarrow A$ is given by $\operatorname{proj}_{A}(x, y)=x$.
a) Does there exist a function $h: A \rightarrow A \times B$ such that $h\left(\operatorname{proj}_{A}(x, y)\right)=(x, y)$? If so, what is it? If not, why not?
b) What happens if B does not have more than one element?

2 Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$ are bijections. Prove that $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$.
3 In a previous problem (Sets/Indexed Sets/Advanced/1), we thought about $\prod_{i \in I} A_{i}$. We ran into some trouble when $I=\mathbb{R}$. In this problem, we will address that issue.
a) Explain why it makes sense to think of $\prod_{i \in I} A_{i}$ as a function $\Pi: I \rightarrow \bigcup_{i \in I} A_{i}$.
b) With this definition, $\prod_{i \in I} A_{i} \subseteq\left\{f \mid f: I \rightarrow \bigcup_{i \in I} A_{i}\right\}$. Can you add an extra condition to the set $\left\{f \mid f: I \rightarrow \bigcup_{i \in I} A_{i}\right\}$ to establish equality?

