ProofSpace Problem Set

Functions

Cardinality

Discussed Problems

Definition: Let S be a set. Then the *cardinality of* S, denoted |S|, describes how many elements are in S. If S is a finite set, then |S| is the number of elements in the set. If S is an infinite set, then $|S| = \infty$.

Definition: Let S be a set such that $|S| = |\mathbb{N}|$. Then S is *countably infinite*, and we say "the cardinality of S is *aleph-naught*," and write $|S| = \aleph_0$. (This symbol is the first letter of the Hebrew alphabet, aleph, with a subscript zero).

Some of these problems are relatively difficult. If you are struggling with some new sets and definitions, write out some examples!

- **1** Let A, B, C, and D be sets such that $A \subseteq B$ and such that C and D are finite, with |C| = m and |D| = n.
 - a) Prove that $|A| \leq |B|$.
 - b) Suppose |A| = |B|. Is it true that A = B?
 - c) Suppose C and D are disjoint. Explain why $|C \cup D| = m + n$.
 - d) Suppose C and D are not disjoint with $|C \cap D| = r$. Explain why $|C \cup D| = m + n r$.
 - e) Prove that $|\mathbb{N} \cup \{0\}| = \aleph_0$.
 - f) Suppose E is a set such that $|E| = \aleph_0$. Prove that $|E \cup C| = \aleph_0$.
 - g) Prove that $|\mathbb{Z}| = \aleph_0$.
- 2 In this problem, we will consider the cardinalities of Cartesian products.
 - a) Prove that $|\mathbb{N} \times \mathbb{N}| = \aleph_0$.
 - b) Prove that for all $n \in \mathbb{N}$, $|\mathbb{N}^n| = \aleph_0$.

- **3** Let $2^{\mathbb{N}} = \{ f \mid f : \mathbb{N} \to \{0, 1\} \}.$
 - a) Give four elements of $2^{\mathbb{N}}$.
 - b) Use Cantor's Diagonlization argument to prove that $2^{\mathbb{N}}$ is uncountable.

Evaluated Problems

- 1 Let $\mathbb{R}^+ = \{x \in \mathbb{R} \mid x > 0\}$. Prove that $|\mathbb{R}| = |\mathbb{R}^+|$.
- **2** Let $\mathbb{N}^{\mathbb{N}} = \{ f \mid f : \mathbb{N} \to \mathbb{N} \}.$
 - a) Give two elements of $\mathbb{N}^{\mathbb{N}}$.
 - b) Prove that $\aleph_0 < |\mathbb{N}^{\mathbb{N}}|$.
- **3** Let A and B be sets such that $|A| = |B| = \aleph_0$. Prove or disprove:
 - a) $|A \cap B| = \aleph_0$.
 - b) $|A \cup B| = \aleph_0$.

(Hint: Consider the two cases (1) A and B are disjoint, and (2) A and B are not disjoint. In the second case, let C = B - A and notice that $A \cup B = A \cup C$ and $A \cap C = \emptyset$. C could be finite or infinite.)

- c) The irrational numbers have cardinality \aleph_0 . (Hint: Consider using part (b). Also, whether you decide to prove or disprove this statement, a formal proof is required.)
- d) Let x be any number. $|A \times \{x\}| = \aleph_0$.

Supplemental Problems

Mathematical Reasoning: Writing and Proof, Online Version 2.0, by Ted Sundstrom:

- 9.1: 4, 5, 7
- 9.2: 1, 2, 7, 8, 9, 10, 13
- 9.3: 1, 7, 8 (Note that the book uses \mathbf{c} to be the cardinality of \mathbb{R})

Advanced Problems

- 1 In this problem, we will consider how many sets are countably infinite. Let A be any set. Let $B = \{A \mid |A| = \aleph_0\}$.
 - a) Recall Russell's Paradox (Sets/Proving Set Relationships/Advanced/1). Use Russell's Paradox to prove that B is uncountable.
 - b) Find an alternate proof that B is uncountable.

- **2** Let A be any set. Define $2^A = \{f \mid f : A \to \{0,1\}\}$. In this question, we will prove that $|2^A| = |\mathcal{P}(A)|$. Let $B = \{1,2,3\}$.
 - a) Find 2^B and find $|2^B|$.
 - b) Prove that $|2^B| = |\mathcal{P}(B)|$.
 - c) Why does it make sense to think about elements of 2^B as lists of 0's and 1's? Can you generalize to 2^A ?
 - d) Define the characteristic function $\chi_A: 2^A \to \mathcal{P}(A)$ as follows: Let $g \in 2^A$. Then, for all $x \in A$, if g(x) = 1, then $x \in \chi_A(g)$ and if g(x) = 0, then $x \notin \chi_A(g)$.

Let $h(x): \mathbb{N} \to \{0,1\}$ be given by h(x) = 1 if and only if $3 \mid x$. What is $\chi_{\mathbb{N}}(h)$?

- e) Prove that for any set $A, \chi_A : 2^A \to \mathcal{P}(A)$ is a bijection.
- f) Use Cantor's Theorem to prove that for all sets A, $|A| < |2^A|$.
- **3** In this problem, we will define a series of cardinalities recursively for all $n \in \mathbb{N}$. In set theory, the index for the definitions provided below are called the *ordinals*, a series of sets that are an extension of the natural numbers.
 - a) Recall that there are multiple infinities. Define \aleph_0 as the cardinality of \mathbb{N} . For each $i+1 \in \mathbb{N}$, define \aleph_{i+1} as the cardinality such that there are no sets A with the property that $\aleph_i < |A| < \aleph_{i+1}$. State the continuum hypothesis in terms of \mathbb{R} , \aleph_0 , and \aleph_1 .
 - b) The symbol \beth is the second letter of the Hebrew alphabet and is called "beth." Define \beth_0 to be \aleph_0 . For each $i+1 \in \mathbb{N}$, define $\beth_{i+1} = |2^{\beth_i}|$. Find a set with cardinality \beth_1 .
 - c) State the continuum hypothesis in terms of \aleph_i and \beth_i .

A modified version of the "generalized continuum hypothesis" states that for each $i \in \mathbb{N}$, $\aleph_i = \beth_i$ (the unmodified version states that is is true for any ordinal i).