ProofSpace Problem Set

Relations

Equivalence Relations

Discussed Problems

1 (Sundstrom) Consider the following relation R defined on \mathbb{Z} .

xRy if and only if $2 \mid (x+y)$.

Prove or disprove:

- a) R is reflexive.
- b) R is symmetric.
- c) R is transitive.
- d) R is an equivalence relation.

2 Consider the following relation \sim defined on \mathbb{R} .

 $a \sim b$ if and only if a + b is not a rational number.

Prove or disprove:

- a) \sim is reflexive.
- b) \sim is symmetric.
- c) \sim is transitive.
- d) \sim is an equivalence relation.
- **3** Let U be a set. Consider the following relation J defined on $\mathcal{P}(U)$.

 $(A, B) \in J$ if and only if there exists a bijection $f : A \to B$.

Prove or disprove:

- a) J is reflexive.
- b) J is symmetric.
- c) J is transitive.
- d) J is an equivalence relation.

4 Consider the following relation \diamond defined on \mathbb{R} .

 $a \diamond b$ if and only if a - b is a rational number.

Prove that \diamond is symmetric. (We proved that this relation is reflexive and transitive in the videos.)

5 Prove that there are exactly two relations on the set $\{7\}$.

Evaluated Problems

1 (Sundstrom) Consider the following relation R defined on \mathbb{Z} .

xRy if and only if $3 \mid (x+y)$.

Prove or disprove:

- a) R is reflexive.
- b) R is symmetric.
- c) R is transitive.
- d) R is an equivalence relation.
- $\ \ \, \mbox{ 2 consider the following relation} \sim \mbox{ defined on } \mathbb{R}\times\mathbb{R}.$

 $(x, y) \sim (a, b)$ if and only if (x - a) and (y - b) are integers.

Prove or disprove:

- a) \sim is reflexive.
- b) \sim is symmetric.
- c) \sim is transitive.
- d) \sim is an equivalence relation.

3 (Sundstrom) Let A be any set, and let R be a relation on A. Call R circular if for all $x, y, z \in A$, xRy and yRz implies zRx. Prove that a relation is an equivalence relation if and only if it is circular and reflexive.

4 Explain why there is only one relation on \emptyset . Then prove or disprove:

- a) The relation is reflexive.
- b) The relation is symmetric.
- c) The relation is transitive.
- d) The relation is an equivalence relation.

Supplemental Problems

Mathematical Reasoning: Writing and Proof, Online Version 2.0, by Ted Sundstrom: Sec. 7.2: 4, 6, 7, 11, 13, 15, 16

Advanced Problems

 ${\bf 1}$ $\,$ In this problem, we will work with geometric reasoning to develop what are called product spaces.

- a) Let $I = \{x \in \mathbb{R} \mid 0 \le x \le 1\}$. Describe I geometrically.
- b) Describe $I \times I$ geometrically.
- c) Describe $I \times I \times I$ geometrically.
- d) Let $S = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x^2 + y^2 = 1\}$. Describe S geometrically.
- e) Describe $I \times S$ geometrically.
- f) Describe $I \times S \times I$ geometrically.
- g) Describe $S \times S$ geometrically.

2 In this problem, we will develop some examples of other kinds of relations. Let R be a relation on a set A.

- a) We say R is **anti-symmetric** if $(a,b) \in R$ and $(b,a) \in R$ implies a = b. Give an example of an anti-symmetric relation on \mathbb{Z} .
- b) A relation R is called a **partial order** on A if it is reflexive, anti-symmetric, and transitive. Give an example of a partial order on \mathbb{R} .
- c) A relation R on a set A is called **total** if for all $a, b \in A$, $(a, b) \in R$ or $(b, a) \in R$. Give an example of a total relation on \mathbb{Z} .
- d) Prove that any relation that is total is also reflexive.
- e) A relation R is called a **total order** if it is a partial order and is total. Give an example of a total order on \mathbb{R} .

Now, find sets A and relations R on A such that:

- f) R is anti-symmetric but not a partial order.
- g) R is a partial order but is not total.
- h) R is a total relation but not a total order.