ProofSpace Problem Set

Relations

Equivalence Classes

Discussed Problems

1 (Sundstrom) Consider the following relation on $\{x \in \mathbb{Z} \mid 0 < x \le 1000\}$.

 $a \sim b$ if and only if a and b have the same number of digits.

This is an equivalence relation. What are the equivalence classes? (Provide a representative element [x] and list the elements for each equivalence class.)

2 (Sundstrom) Consider the following relation \sim on $\mathbb{R} \times \mathbb{R}$.

$$(a,b) \sim (c,d)$$
 if and only if $a^2 + b^2 = c^2 + d^2$.

This is an equivalence relation.

- a) List four elements of [(0,5)].
- b) What is [(0,0)]?
- c) Without using the \sim symbol, write out in set notation [(2,3)].
- d) Describe [(2,3)] geometrically.
- e) Can all equivalence classes be described geometrically in the same way? Why or why not?
- **3** Recall that if R is an equivalence relation and [a] and [b] are equivalence classes, then [a] = [b] or $[a] \cap [b] = \emptyset$. Prove this fact.

- 4 For each of the following, define an equivalence relation R on \mathbb{Z} with the given property. Be prepared to justify your answer. Your answer for d) may be related to your earlier answers, but does not have to be.
 - a) R has exactly one equivalence class.
 - b) R has exactly two equivalence classes.
 - c) R has exactly three equivalence classes.
 - d) Let $n \in \mathbb{N}$. R has exactly n equivalence classes.

Evaluated Problems

1 Consider the following equivalence relation S on \mathbb{R} .

$$(a,b) \in S$$
 if and only if $(a-b) \in \mathbb{Q}$.

Provide four distinct equivalence classes of S, including a representative element [x] and several elements of each equivalence class.

2 Recall Problem 2 above concerning the relation \sim on $\mathbb{R} \times \mathbb{R}$.

$$(a, b) \sim (c, d)$$
 if and only if $a^2 + b^2 = c^2 + d^2$.

- a) Prove \sim is an equivalence relation.
- b) Let $\mathbb{R}^* = \{x \in \mathbb{R} \mid x \geq 0\}$. Let A be the set of all equivalence classes of \sim . Find a bijection from \mathbb{R}^* to A. Prove the function is injective.
- **3** Recall that if R is an equivalence relation and [x] and [y] are equivalence classes, then xRy if and only if [x] = [y]. Prove this fact.
- **4** For each of the following, define an equivalence relation R on \mathbb{R} with the given property. Be prepared to justify your answer. Your answer for d) may be related to your earlier answers, but does not have to be.
 - a) R has exactly two equivalence classes.
 - b) R has exactly three equivalence classes.
 - c) R has exactly four equivalence classes.
 - d) Let $n \in \mathbb{N}$. R has exactly n equivalence classes.

Supplemental Problems

Mathematical Reasoning: Writing and Proof, Online Version 2.0, by Ted Sundstrom: Sec. 7.3: 1, 3, 4, 5, 9, 7, 10, 11.

Advanced Problems

- 1 Recall that for $x \in \mathbb{R}$, |x|, called the absolute value of x, is given by $\sqrt{x^2}$. In this problem, we will consider the way equivalence classes work in the mathematical field called **topology** by considering some equivalence relations.
 - a) Let X be the unit square region $\{(x,y) \in \mathbb{R}^2 | |x| \leq 1 \text{ and } |y| \leq 1\}$. We can assign an equivalence relation to X so that two points (x_1, y_1) and (x_2, y_2) in X are equivalent if:
 - they are the same point, or
 - $x_1 = x_2$ and $|y_1| = |y_2| = 1$

These equivalence classes can be considered as single points in a new space called Y.

- (a) Draw a picture of X showing some typical equivalence classes.
- (b) Can you describe Y as a simple shape or otherwise geometrically? Remember that in the space Y, points that were equivalent in X are "glued together."
- b) Let D be the "filled-in disk" $\{(x,y) \in \mathbb{R}^2 | x^2 + y^2 \le 1\}$. We can assign an equivalence relation to D so that two points (x_1,y_1) and (x_2,y_2) in D are equivalent if:
 - they are the same point, or
 - $x_1^2 + y_1^2 = 1, x_2^2 + y_2^2 = 1, x_1 = x_2 \text{ and } y_1 = -y_2$

These equivalence classes can be considered as single points in a new space called B.

- (a) Draw a picture of D showing some typical equivalence classes.
- (b) Can you describe B as a simple shape or otherwise geometrically?

The spaces Y and B are called quotient spaces.

- **2** Let A be a set and P be a collection of subsets of A (that is, $P \subseteq \mathcal{P}(A)$). We say P is a **partition** of A if:
 - i) $\varnothing \notin P$.
 - ii) For all $b \in A$, there exists $B \in P$ such that $b \in B$.
 - iii) For any B and C in P, if $B \neq C$ then B and C are disjoint.

Prove the following:

SUNY IITG

- a) Let Q be a set and let R be an equivalence relation on Q. Prove that the set of equivalence classes of R form a partition of Q.
- b) Challenge: Suppose P is a partition of Q. Prove that there exists a unique equivalence relation R on Q such that P = Q/R

- **3** Let $\omega = \mathbb{N} \cup \{0\}$. In this problem, we will construct the integers from only the set ω .
 - a) Let's start by thinking about an ordered pair (a, b) from ω as representing the number a b. Then, we'd like two ordered pairs (a, b) and (c, d) to be equal if they represent the same number, that is, a b = c d. However, ω is not closed under subtraction, so we will write this relation in terms of addition. Define the relation \sim on $\omega \times \omega$ by:

$$(a,b) \sim (c,d)$$
 if and only if $a+c=b+d$.

Prove that \sim is an equivalence relation.

b) We would like to show that $\omega \times \omega / \sim$ behaves like \mathbb{Z} . We can now think about [(a,b)] as representing the number a-b. Then, we'd like [(a,b)]+[(c,d)] to represent (a-b)+(c-d). We would like to define it without subtraction, so we'll write this as (a+c)-(b+d), which is [(a+c),(b+d)]. Therefore, we will define addition as follows:

$$[(a,b)] + [(c,d)] = [(a+c,b+d)].$$

We will prove that our new addition is "well-defined," that is, that if we use different representatives for our equivalence classes, the addition still holds. Suppose $(e, f) \in [(a, b)]$ and $(g, h) \in [(c, d)]$. Using the definition above, prove that [(a, b)] + [(c, d)] = [(e, f)] + [(g, h)].

- c) Using part b) as a template, define multiplication on $\omega \times \omega / \sim$ and show that it is well-defined.
- d) Challenge: define an equivalence relation R on $\mathbb{Z} \times \mathbb{N}$ so that $\mathbb{Z}^{\times \mathbb{N}}/R$ behaves like the rational numbers.