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The current balance is an excellent device for
demonstrating the force on a current-carry-
ing wire.  By considering the electrons flow-

ing through the wires and applying some geometrical
analysis, we can gain a better understanding of why
the wire moves, how the current is distributed in the
wires, and why the simplifying assumptions of the
force law apply to this realistic situation.
Fig. 1. The current balance. With identical current flowing in
opposite directions through the top, moveable wire and the
bottom, stationary wire, the top wire will rise slightly.
The current balance (Fig. 1) is a piece of equip-
ment traditionally employed in an introductory elec-
tricity and magnetism laboratory course to illustrate
the effects of Ampere’s law.  It consists of two parallel
wires— a stationary wire mounted on an insulating
280 DOI: 10.1119/1
base and a moveable wire that, through means of a
counterweight and knife-edge fulcrum, is balanced
just above the stationary wire.1 When a current passes
through each wire in opposite directions, the induced
magnetic field produces a force on the moving charges
and the wires repel.  Typically, weights are added to
the moveable wire until the system returns to the
equilibrium position, so that the added weight is
equal to the magnetic force on the wire.  As such, the
“Force on a Current-Carrying Wire” experiment is an
excellent demonstration of the laws of electromagnet-
ism.  Indeed the SI unit of current (the ampere) and
the unit of charge (the coulomb) are both defined
based on the experiment involving two straight paral-
lel conductors.2

This fundamental experiment has several subtleties,
however, which uninitiated students may not discover.
First of all, in textbooks and lectures, students are
sometimes instructed that the magnetic field cannot
do work.  How is it, then, that the magnetic force up-
ward results in an upward motion of the wire?  In ad-
dition, in deriving the formula for the force between
two current-carrying wires, the wires are assumed to
be infinitesimally thin, when in fact the wires have
some cross-sectional area.  How is the current distrib-
uted across the cross-sectional face of the wires?  How
is the force acting on the moving electrons transferred
to the wire itself?  Finally, for a standard current bal-
ance, the wire diameter is about the same size as the
separation between the wires.  What effect does this
have on the experiment?
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Fig. 2. The forces acting on an electron in the moveable
wire as that wire rises a distance d.
Magnetic Fields Can Do No Work

If a force acts on an object moving through some
distance, the work done depends on the component
of the force that is parallel to the direction of the dis-
placement.  The force provided by a magnetic field
cannot do work because the force is always perpendic-
ular to the displacement.  Yet in this experiment there
is an object (the moveable wire) that moves vertically
in the region of the horizontal magnetic field.  Where
does the energy to lift the wire come from?  

E.P. Mosca3 has answered this question in the con-
text of induced emf in a rod moving in an external
magnetic field.  The following argument is very simi-
lar to the one given in Ref. 3.  

Figure 2 illustrates the case when the top wire is
moving upward.  Consider a particular electron in the
moveable wire.  Because the electron cannot escape
the wire, it exerts a force on the wire (F ).  Conse-
quently, there is an equal and opposite force acting on
the electron due to the wire (FW).  As discussed in the
appendix of Ref. 3, this force is due to the Hall effect.
The force on the electron due to the electric field pro-
ducing the current is FE.  The velocity of the electron
has a horizontal component along the wire and a ver-
tical component caused by the motion of the wire it-
self.   The resulting magnetic force on the electron, FB,
is perpendicular to both the electron velocity and the
magnetic field.  These forces acting on the electron are
shown in Fig. 2.  Because the forces on the electron
balance, we obtain, in the vertical direction, 

FW =  FB cos �, (1)

and in the horizontal direction,
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FE =  FB sin �. (2)

Eliminating FB from the two equations, we have
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In the time it takes for the electron to travel a hori-
zontal distance L, the wire moves a distance d, so
that tan � = �
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�.  Because FW, the force of the wire

acting on the electron is equal in magnitude to the
force of the electron acting on the wire (F), the work
done on the wire is 
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However, the work done by the power supply in
moving an electron a distance L along the wire is
given by eEL = eV, where V is the potential differ-
ence across that length of the wire.  The work done
by the power supply is equal to the work required to
raise the wire.  (See Ref. 3 for a brief discussion of a
more complete picture.)

Where Is the Current?
Since the moving electrons experience the magnet-

ic force, wouldn’t we expect the currents to be 
concentrated on the far sides of the wires?  It seems
reasonable that the currents repel one another in such
a fashion. 
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Ohm’s law is completely stated in terms of the cur-
rent density J as J = �(E + v � B), where v is the aver-
age velocity of the charge carriers in the wire.  The v �
B term leads to the Hall effect within the wire.  How-
ever, this term is negligible when compared with the
contribution from E.  The potential difference be-
tween the two ends of the wire is given by �V = El,
where l is the length of the wire and �V is the same re-
gardless of whether l is taken to be at the near or far
side of the wire.  This can only be true if the electric
field is the same at all points across the wire.  There-
fore, to an excellent approximation, the current is uni-
formly distributed across the circular cross section of
the wire.
The Wires Aren’t Infinitesimally Thin
In the current balance experiment, one usually as-

sumes that the finite diameter of the wires has a negli-
gible effect, and for infinitesimally thin wires separat-
ed by a distance a the force is given by 
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The currents are treated as if they are concentrated at
the centers of the wires.  

Of course this is not true; the current density is
uniform throughout the cross-sectional area of the
wire.  In Fig. 2, the current flowing through the upper
portion of the top, moveable wire experiences a small-
er force (since it’s farther away from the source of the
magnetic field) than the current flowing through the
bottom portion of the top, moveable wire.  Are we
making a horrible mistake by using the center-to-cen-
ter distance in our formula for the force?  To investi-
gate this we have performed calculations assuming
that the bottom, stationary wire has a circular cross
section and that the top, moveable wire may or may
not have a circular cross section.

The magnitude of the magnetic field created by the
stationary wire with a cylindrically symmetric current
distribution is given by the expression

B(r)  =  �
2

�

�
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� , (6)

as long as r, the distance from the center of the wire,
is greater than b, the radius of the wire.  

To examine the effect of the finite size of the move-
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Fig. 3. The cross-sectional view of the top,
moveable wire and a bottom, stationary wire.
In this figure, the dimensions for a moveable
wire with rectangular cross section are shown.

moveable
wire
able wire, we consider it to have arbitrary cross-sec-
tional area A.  Again, we assume a uniform current
density.  We divide the cross section into areas dA =
dxdy, each of which is the cross section of a filament of
current.  The current flowing through dA is equal to 

the current density times the area, which must be

i ��
d

A

A
��.  The center of the moveable wire is located a

distance a away from the center of the stationary 
wire.  In the appendix we write the force dF that acts
on the filament of current and integrate to obtain
the total force acting on the upper wire.  It turns out
that if the wire has circular cross section, then the
force exerted on it by the lower wire is given exactly
by Eq. (5).

Conclusion
By considering the electrons flowing through the

wire and applying geometrical analysis, we have found
that the current balance harbors some interesting
physics.  We have shown that the energy to lift the
moveable wire is supplied by the power supply that
produces the current.  Using integral calculus we have
shown that the simplifying assumption that the cur-
rent is concentrated at the center of the wire (which
we know not to be true) does not matter for wires
with circular cross sections.  Careful consideration of
these aspects of the current-carrying wire experiment
may enhance any introductory electromagnetism lab
course.
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Geometrical Correction Factor
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Fig. 4. The geometrical correction factor, f, versus the
center-to-center separation (a) of the wires. The separa-
tion distances are normalized to c (one-half the height
of the moving wire) in each case. Calculations are
shown as solid lines for moveable wires with circular,
square, and rectangular cross sections.  Data points are
shown for a moveable wire with a circular cross section
(blue circles) and for a moveable wire with a rectangu-
lar cross section that is five times wider than it is high
(squares).
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Appendix
Figure 3 shows a stationary wire having a circular
cross section located beneath a moveable wire having
cross-sectional area A.  Both wires carry current i.
The current flowing through the filament of area 

dA = dxdy is i ��
d

A

A
��.  The filament experiences a 
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force dF due to the presence of the stationary wire
give by:
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But what’s really of interest to us is the y-component
of this force (the x-component vanishes).  By rewrit-
ing dFy = dF sin 	 in Cartesian components, we
obtain an expression that must be integrated over the
area A:
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Here we have inserted the center-to-center distance a
in the numerator and denominator so that the total
force acting on the moveable wire is 
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where the dimensionless correction factor f depends
on a and the dimensions of the moveable wire.  The
expression for the total force is just that for two
infinitesimally thin wires modified by a correction
factor.

In the limit where a is much larger than the dimen-
sions of the wire, the correction factor should be uni-
ty.  For example, for a moveable wire with a rectangu-
lar cross section (with a width 2b and a height 2c, as in
Fig. 3), one can show that the correction factor be-
comes

�0Li2
��
2��x2�+�y2�
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Carrying out the integration, we obtain.
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In the limits a >> b and a >>c the first two terms can-
cel one another.  Using L’Hopital’s rule on the
remaining term, we obtain

lim frectangular  =  1, (12)
a�


as expected.
Using MathCad4 to handle the integration, we

considered a wire with a rectangular cross section and
a circular cross section (with radius b).  The geometry
for the case of the rectangular moveable wire is shown
in Fig. 3.  The results of the numerical integration are
displayed in Fig. 4 with the correction factors plotted
as functions of the center-to-center distance for vari-
ous geometries.  Notice that for such a rectangular
wire, the correction can be fairly substantial, but for a
square wire the effect is only a few percent.  

Surprisingly, the correction factor for the circular
wire is unity!  The relevant integral,    

,(13)

is solved by trigonometric substitutions and integra-
tion by parts, and found to be equal to one.  This
means that for the most common case, of two wires
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of circular cross section, it’s perfectly fine to assume
that the wires are infinitesimally thin.

To test our calculations, the correction factor was
measured using a standard circular wire and then a
rectangular wire manufactured for this purpose.  The
width of the rectangular wire was five times its height.
The data follow the trend of the appropriate curves,
although there is some discrepancy for the case of the
rectangular wire with the smallest separation distance.
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