Hour Exam 2 Solutions

Math 384

April 2015

Question 1

Find a PDF on [0, 1] such that $P(X = x) \propto x^{2.5}$. From the problem statement the PDF must be of the form $p(x) = kx^{2.5}$, and to be a PDF it must integrate to 1 over the interval [0, 1], which allows you to find k:

$$1 = \int_0^1 k x^{2.5} dx$$
$$= k \left[\frac{x^{3.5}}{3.5} \right]_0^1$$
$$= k \left[\frac{1}{\frac{7}{2}} \right]$$
$$= \frac{2}{7} k$$

Thus $k = \frac{7}{2}$, and so $p(x) = \frac{7}{2}x^{2.5}$.

Question 2

Equation for Phong specular highlights in an alternate universe. Phong's basic equation is $I_o = k_s \cos^a \Theta I_i$ where I_o is the reflected light intensity and I_i is the incoming light intensity. Assuming unit-length vectors, $\cos \Theta = \vec{R} \cdot \vec{V} = \vec{L} \cdot \vec{V}$. So the final equation is $I_o = k_s (\vec{L} \cdot \vec{V})^a I_i$.

Question 3

How does a vector from a point to a light in canonical coordinates transform to world coordinates? Let $\vec{P'}$ and $\vec{S'}$ be the point and light position in world

coordinates, respectively, so $\vec{P}' = T\vec{P}$ and $\vec{S}' = T\vec{S}$. Now let \vec{L}' be the world-coordinate vector from \vec{P}' to \vec{S}' . Then ...

$$\vec{L}' = \vec{S}' - \vec{P}'$$

= $T\vec{S} - T\vec{P}$
= $T(\vec{S} - \vec{P})$
= $T\vec{L}$

Question 4

Phineas's pseudocode modified to estimate the integral by using 32 samples could look like this:

microwaveIllumination = 0 for i = 1 : 32 theta = rand * π phi = rand * 2 * π probability = 1 / (2 * π * π) directionX = sin(theta) * cos(phi) directionY = cos(theta) directionZ = sin(theta) * sin(phi) direction = vector(directionX, directionY, directionZ) sampleRay = ray(P, direction) t = trace(sampleRay) if t >= inf microwaveIllumination = microwaveIllumination + cmb(theta,phi) / (probability * 32) end end