Hour Exam 2 Solutions

Math 384

April 2015

Question 1

Find a PDF on $[0,1]$ such that $P(X=x) \propto x^{2.5}$. From the problem statement the PDF must be of the form $p(x)=k x^{2.5}$, and to be a PDF it must integrate to 1 over the interval $[0,1]$, which allows you to find k :

$$
\begin{aligned}
1 & =\int_{0}^{1} k x^{2.5} d x \\
& =k\left[\frac{x^{3.5}}{3.5}\right]_{0}^{1} \\
& =k\left[\frac{1}{7}\right] \\
& =\frac{2}{7} k
\end{aligned}
$$

Thus $k=\frac{7}{2}$, and so $p(x)=\frac{7}{2} x^{2.5}$.

Question 2

Equation for Phong specular highlights in an alternate universe. Phong's basic equation is $I_{o}=k_{s} \cos ^{a} \Theta I_{i}$ where I_{o} is the reflected light intensity and I_{i} is the incoming light intensity. Assuming unit-length vectors, $\cos \Theta=\vec{R} \cdot \vec{V}=\vec{L} \cdot \vec{V}$. So the final equation is $I_{o}=k_{s}(\vec{L} \cdot \vec{V})^{a} I_{i}$.

Question 3

How does a vector from a point to a light in canonical coordinates transform to world coordinates? Let \vec{P}^{\prime} and \vec{S}^{\prime} be the point and light position in world
coordinates, respectively, so $\vec{P}^{\prime}=T \vec{P}$ and $\vec{S}^{\prime}=T \vec{S}$. Now let \vec{L}^{\prime} be the worldcoordinate vector from \vec{P}^{\prime} to \vec{S}^{\prime}. Then ...

$$
\begin{aligned}
\vec{L}^{\prime} & =\vec{S}^{\prime}-\vec{P}^{\prime} \\
& =T \vec{S}-T \vec{P} \\
& =T(\vec{S}-\vec{P}) \\
& =T \vec{L}
\end{aligned}
$$

Question 4

Phineas's pseudocode modified to estimate the integral by using 32 samples could look like this:

```
microwaveIllumination \(=0\)
for \(\mathrm{i}=1: 32\)
    theta \(=\operatorname{rand}^{*} \pi\)
    phi \(=\) rand \({ }^{*} 2^{*} \pi\)
    probability \(=1 /\left(2^{*} \pi^{*} \pi\right)\)
    directionX \(=\sin (\) theta \() * \cos (\) phi \()\)
    direction \(Y=\cos (\) theta \()\)
    directionZ \(=\sin (\) theta \() * \sin (\) phi \()\)
    direction \(=\) vector \((\) directionX, directionY, directionZ \()\)
    sampleRay \(=\operatorname{ray}(\mathrm{P}\), direction \()\)
    \(\mathrm{t}=\) trace ( sampleRay )
    if \(\mathrm{t}>=\inf\)
        microwaveIllumination \(=\) microwaveIllumination \(+\mathrm{cmb}(\) theta, phi \() /(\) probability \(* 32)\)
    end
end
```

