Algebraic Topology - Homework 1

Problem 1. Show that the interval $[0,1)$ is homeomorphic to $[0, \infty)$ by defining an algebraic function from one to the other.

Problem 2. Let a and b be real numbers. Show that any open interval, including (a, b), $(-\infty, b)$, and (a, ∞), is homeomorphic to \mathbb{R}.
Problem 3. Show that the open disk $\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}<1\right\}$ is homeomorphic to \mathbb{R}^{2}. Hint: Use your homeomorphism in Problem 1.

Problem 4. Show that the closed disk with the center point removed $\left\{(x, y) \in \mathbb{R}^{2} \mid 0<\right.$ $\left.x^{2}+y^{2} \leq 1\right\}$ is homeomorphic to the closed disk with a smaller disk removed (half-open annulus) $\left\{(x, y) \in \mathbb{R}^{2} \mid 1<x^{2}+y^{2} \leq 4\right\}$. Does this mean the removed point is homeomorphic to the removed disk? Explain.

Problem 5. Let A, B, C, and D be sets. Suppose $f: A \rightarrow C$ and $g: B \rightarrow D$ are homeomorphisms. Use f and g to define a homeomorphism between $A \times B$ and $C \times D$, and prove that it is a bijection (i.e. you do NOT need to show continuity.)

Problem 6. Give a geometric description of a homeomorphism from the sphere S^{2} to the unit cube $C=\left\{(x, y, z) \in \mathbb{R}^{3} \mid \max \{|x|,|y|,|z|\}=1\right\}$.
Problem 7. Give a geometric description of a homeomorphism from the cylinder $S^{1} \times[0,1]$ to the annulus $A=\left\{(x, y) \in \mathbb{R}^{2} \mid 1 \leq x^{2}+y^{2} \leq 4\right\}$.

Problem 8. Give a geometric description of a homeomorphism from the sphere with the north pole removed to the plane \mathbb{R}^{2}.

Problem 9. Let X be the unit square region $\left\{(x, y) \in \mathbb{R}^{2}| | x \mid \leq 1\right.$ and $\left.|y| \leq 1\right\}$. We can assign an equivalence relation to X so that two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in X are equivalent if:

- they are the same point, or
- $x_{1}=x_{2}$ and $\left|y_{1}\right|=\left|y_{2}\right|=1$

These equivalence classes can be considered as single points in a new space called Y.
(a) Draw a picture of X showing some typical equivalence classes.
(b) What simple shape does Y appear to be homeomorphic to? Explain.

Problem 10. Define an equivalence relation on the closed interval $[0,1]$ so there is a simple homeomorphism between the set of equivalence classes and the circle S^{1}.

Problem 11. Let D be the closed disk $\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\}$. We can assign an equivalence relation to D so that two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in D are equivalent if:

- they are the same point, or
- $x_{1}^{2}+y_{1}^{2}=1, x_{2}^{2}+y_{2}^{2}=1, x_{1}=x_{2}$ and $y_{1}=-y_{2}$

These equivalence classes can be considered as single points in a new space called Y.
(a) Draw a picture of D showing some typical equivalence classes.
(b) What simple shape does Y appear to be homeomorphic to? Explain.

