Algebraic Topology - Homework 4

Problem 1. Suppose α is any loop based at a point x_{0} in a space X. Draw several stages of a homotopy to illustrate how $\alpha \cdot \alpha^{-1}$ is homotopic to the constant loop ε.

Problem 2. Let G and H be groups. Suppose $h: G \rightarrow H$ is a homomorphism. Let e denote the identity of G.
(a) Show that $h(e)$ is the identity element of H.
(b) For any $x \in G$, show that $h\left(x^{-1}\right)=(h(x))^{-1}$.
(c) Show h is injective if and only if $\operatorname{ker}(h)=\{e\}$.

Problem 3. Let x_{0} and x_{1} be points in a topological space X, and let γ be a path from x_{1} to x_{0}. Show that the isomorphism $h: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{1}\right)$, as defined in class with $h(\langle\alpha\rangle)=\left\langle\gamma \alpha \gamma^{-1}\right\rangle$, is in fact an isomorphism. To do this, just show that h is a homomorphism and then find an inverse of h to conclude that h is bijective.

Problem 4. Let X and Y be topological spaces, and let x_{0} be a point in a X. Let $f: X \rightarrow Y$ be a continuous function, and let α and β be loops in X based at x_{0}.
(a) Show that $f \circ \alpha$ is a loop in Y.
(b) Suppose α and β are homotopic in X. Use a homotopy between α and β to construct a homotopy between $f \circ \alpha$ and $f \circ \beta$ in Y. Conclude that $f_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, f\left(x_{0}\right)\right)$, defined by $f_{*}(\langle\alpha\rangle)=\langle f \circ \alpha\rangle$, is well-defined.
(c) Show that f_{*} is a homomorphism.

Problem 5. Suppose that for any topological space X we have an associated group $H(X)$. Suppose that for any continuous function $f: X \rightarrow Y$ we are able to get an induced homomorphism $f_{*}: H(X) \rightarrow H(Y)$ that satisfies the two properties: (1) $\left(i d_{X}\right)_{*}=i d_{H(X)}$ and (2) if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$, then $(g \circ f)_{*}=g_{*} \circ f_{*}$.

Consider the circle S^{1} as the boundary of the disk D^{2}. Assume that $H\left(D^{2}\right) \cong\{0\}$ and $H\left(S^{1}\right) \cong \mathbb{Z}$.
(a) Suppose there is a continuous function $r: D^{2} \rightarrow S^{1}$ with $r(x)=x$ for all $x \in S^{1}$. Describe the homomorphism r_{*}. (Since all other points on D^{2} are continuously mapped to somewhere in S^{1}, this map r retracts the entire disk onto its boundary. It is called a retract of D^{2} onto S^{1}.)
(b) Consider the inclusion function $i: S^{1} \rightarrow D^{2}$ with $i(x)=x$ for all $x \in S^{1}$. Describe the homomorphism i_{*}.
(c) What is $r \circ i$? What is $(r \circ i)_{*}$?
(d) Have you found a contradiction? If so, conclude that, if such a group H could be defined, then no continuous function can retract a disk onto its boundary by leaving the boundary points fixed. If not, consider your life's worth and start the problem over again.
(e) Does such a group H exist?
(f) How does the fact that there does not exit a retract of D^{2} to S^{1} that leaves S^{1} fixed relate to deformation retractions?

Problem 6. Let B^{n} be the n-ball.
(a) Determine $\pi_{1}\left(B^{n}\right)$ for $n \geq 2$. Hint: See proof for $\pi_{1}\left(B^{2}\right)$ since B^{2} is a disk.
(b) Determine $\pi_{1}\left(S^{n}\right)$ for $n \geq 2$. Hint: See proof for $\pi_{1}\left(S^{2}\right)$.

Problem 7. Determine the fundamental group of the annulus, Mobius strip, and the solid torus.

