Algebraic Topology - Homework 5

Problem 1. What is the inverse of $a b$ in the free group $\langle a, b\rangle$? Describe the inverse of an arbitrary element in $\langle a, b\rangle$.

Problem 2. In the free group $\langle a, b\rangle$, let $c=a b$. Show that any element in $\langle a, b\rangle$ can be written in terms of a and c.

Problem 3.

(a) Describe the elements in the free group $\langle a\rangle$ with one generator. What familiar group is $\langle a\rangle$ isomorphic to?
(b) Describe the elements in the free group $\langle a, b, c\rangle$ with three generators.
(c) Draw a picture of $S^{1} \vee S^{1} \vee S^{1}$ and determine $\pi_{1}\left(S^{1} \vee S^{1} \vee S^{1}\right)$.
(d) Generalize this to compute $\pi_{1}\left(\bigvee_{i=1}^{n} S^{1}\right)$.

Problem 4. Draw a picture of $S^{1} \vee S^{2}$ and compute $\pi_{1}\left(S^{1} \vee S^{2}\right)$. Explain your reasoning.
Problem 5. Let X be the space obtained by removing the center point from D^{2}.
(a) Deformation retract X as much as possible. What do you get?
(b) Compute $\pi_{1}(X)$. Draw generators of the fundamental group as loops in X.

Problem 6.

(a) What is the lowest dimensional space that is a deformation retract of a disk with two holes?
(b) Draw a picture indicating this deformation retract.
(c) Compute the fundamental group of a disk with two holes. Explain your reasoning.
(d) Draw loops in the disk with two holes that represent $a b, b a, b a b^{-1}$, and one of your favorite words in the free group on a and b.

Problem 7. Let X be the space obtained by removing from B^{3} the line segment from the north pole to the south pole.
(a) Deformation retract X as much as possible. What do you get?
(b) Compute $\pi_{1}(X)$. Draw generators of the fundamental group as loops in X.

Problem 8. Let X be the space obtained by removing from \mathbb{R}^{3} the unit circle in the $x y$-plane. Let Y be the space obtained by removing from \mathbb{R}^{3} the unit circle in the $x y$-plane and the z-axis.
(a) Deformation retract X as much as possible. What do you get?
(b) Compute $\pi_{1}(X)$. Draw generators of the fundamental group as loops in X.
(c) Deformation retract Y as much as possible. What do you get?
(d) Compute $\pi_{1}(Y)$. Draw generators of the fundamental group as loops in Y.

Problem 9. Let X be the space obtained by removing from \mathbb{R}^{3} two non-overlapping circles in the $x y$-plane.
(a) Deformation retract X as much as possible. What do you get?
(b) Compute $\pi_{1}(X)$. Draw generators of the fundamental group as loops in X.

Problem 10. Let X be the space obtained by removing a single point from the torus T^{2}.
(a) Deformation retract X as much as possible. What do you get?
(b) Compute $\pi_{1}(X)$. Draw generators of the fundamental group as loops in X.

Problem 11. Attempt to draw and describe in words each of the following spaces. Also determine their fundamental groups.
(a) $\left(S^{1} \vee S^{1}\right) \times S^{1}$
(b) $S^{2} \times S^{1}$

Problem 12. Without looking it up anywhere, what do you thing the fundamental group of a genus 2 surface is, i.e. $\pi_{1}\left(T^{2} \# T^{2}\right)$? As we have not yet learned the theorem we will need to do this, just provide a logical guess. I don't care if your answer is right or wrong. Draw a picture indicating any generators of the fundamental group.

