
1 Example of Proper Proofs

To give you an idea of what is expected when you prove that a set is a vector space, here are two
versions of a proof to the same problem. Either one of these would be considered correct, proper
proofs. We first include the properties of a vector space for convenience.

Definition 1. A vector space V over a field F is a set of elements with two defined operations
called addition and scalar multiplication such that the following properties hold.

(C1) (Closure of Addition) If x, y ∈ V then x + y ∈ V .

(C2) (Closure of Scalar Multiplication) If x ∈ V and c ∈ F then cx ∈ V .

(V1) (Commutativity of Addition) For all x, y ∈ V , x + y = y + x.

(V2) (Associativity of Addition) For all x, y, z ∈ V , (x + y) + z = x + (y + z).

(V3) (Additive Identity) There is an element called the zero vector and denoted ~0 such that
x +~0 = x for all x ∈ V .

(V4) (Additive Inverse) For each element x ∈ V there is an element y ∈ V such that x + y = ~0.
This y is called the additive inverse of x and is usually denoted −x.

(V5) (Scalar Distribution) For all x, y ∈ V and a ∈ F , a(x + y) = ax + ay.

(V6) (Vector Distribution) For all x ∈ V and a, b ∈ F , (a + b)x = ax + bx.

(V7) (Scalar Associativity) For all x ∈ V and a, b ∈ F , (ab)x = a(bx).

(V8) (Scalar Identity) For each x ∈ V , 1x = x.

Proposition 2. The set of real-valued even functions defined defined for all real numbers with the
standard operations of addition and scalar multiplication of functions is a vector space.

Before we begin the proof, let us recall a few things.

1. The standard operations for functions are defined as

(f + g)(x) = f(x) + g(x) and (cf)(x) = c[f(x)].

2. A function is called even if f(−x) = f(x) for all x.

3. Remember the following distinction: f is a function, but f(x) is a real number . That
is, once we plug something into our function, we get a real number not a function. For
example, if x is a real number, then x2 is a real number, not a function. This is subtle but
extremely important. For example, we know real numbers commute and thus know that
f(x) + g(x) = g(x) + f(x). However, we must prove that f + g = g + f

Remember all of these as we progress through the proof of the proposition. We will refer to them
throughout. The blue text above the equalities is the justification for that equality. For example,
when you see “by 3.”, we are saying that this step is valid because we are simply dealing with real
numbers, not functions.
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1.1 Proof of Proposition 2

Proof. (C1) Let f, g be even functions. Then f(−x) = f(x) and g(−x) = g(x). Is f + g even?

(f + g)(−x)
by 1.
= f(−x) + g(−x)

f, g even
= f(x) + g(x)

by 1.
= (f + g)(x)

Thus f + g is even.

(C2) Let f be even and c ∈ R. Is cf even?

(cf)(−x)
by 1.
= c[f(−x)]

f even
= c[f(x)]

by 1.
= (cf)(x)

Thus cf is even.

(V1) Let f, g be even functions. Does f + g = g + f?

(f + g)(x)
by 1.
= f(x) + g(x)

by 3.
= g(x) + f(x)

by 1.
= (g + f)(x)

Thus f + g = g + f .

(V2) Let f, g, h be even functions. Does (f + g) + h = f + (g + h)?

[(f + g) + h](x)
by 1.
= (f + g)(x) + h(x)

by 1.
= [f(x) + g(x)] + h(x)

by 3.
= f(x) + [g(x) + h(x)]

by 1.
= f(x) + (g + h)(x)

by 1.
= [f + (g + h)](x)

Thus (f + g) + h = f + (g + h).

(V3) Is there a zero vector? We know the constant function z(x) = 0 for all x is the additive
identity, we just have to verify that it is even (so that it will be in this set of even functions.)

z(−x)
by def
= 0

by def
= z(x)

Thus z(x) = 0 is even.

(V4) Let f be even. Is −f even?

(−f)(−x)
by 1.
= −[f(−x)]

f even
= −[f(x)]

by 1.
= (−f)(x)

Thus −f is even.

(V5) Let f, g be even and a ∈ R. Does a(f + g) = af + ag?

[a(f+g)](x)
by 1.
= a[(f+g)(x)]

by 1.
= a[f(x)+g(x)]

by 3.
= a[f(x)]+a[g(x)]

by 1.
= (af)(x)+(ag)(x)]

by 1.
= [af+ag](x)

Thus a(f + g) = af + ag.

(V6) Let f be even and a, b ∈ R. Does (a + b)f = af + bf?

[(a + b)f ](x)
by 1.
= (a + b)[f(x)]

by 3.
= a[f(x)] + b[f(x)]

by 1.
= (af)(x) + (bf)(x)]

by 1.
= [af + bf ](x)

Thus (a + b)f = af + bf .

2



(V7) Let f be even and a, b ∈ R. Does (ab)f = a(bf)?

[(ab)f ](x)
by 1.
= (ab)[f(x)]

by 3.
= a(b[f(x)])

by 1.
= a[(bf)(x)]

by 1.
= [a(bf)](x)

Thus (ab)f = a(bf).

(V8) Let f be even. Does 1f = f?

(1f)(x)
by 1.
= 1[f(x)]

by 3.
= f(x)

Thus 1f = f .
We have shown that all of the properties of a vector space are true for the set of even functions.

Therefore, this set is a vector space.

1.2 Alternate Proof of Proposition 2

Now we will see a shorter, alternate proof. We make use of the fact that we already know that the
set of real-valued functions Fun(R) is a vector space. For example, because ALL functions satisfy
commutativity of addition, we know that even functions do to.

Proof. The set of even functions is a subset of the vector space Fun(R). Thus we know that
even functions will automatically satisfy (V1), (V2), and (V5)-(V8) because these are true for all
functions. The only properties left to show are (C1), (C2), (V3), and (V4).

(C1) Let f, g be even functions. Then f(−x) = f(x) and g(−x) = g(x). Is f + g even?

(f + g)(−x)
by 1.
= f(−x) + g(−x)

f, g even
= f(x) + g(x)

by 1.
= (f + g)(x)

Thus f + g is even.

(C2) Let f be even and c ∈ R. Is cf even?

(cf)(−x)
by 1.
= c[f(−x)]

f even
= c[f(x)]

by 1.
= (cf)(x)

Thus cf is even.

(V3) Is the zero vector of Fun(R) even? We know the constant function z(x) = 0 for all x is
the additive identity of Fun(R), we just have to verify that it is even.

z(−x)
by def
= 0

by def
= z(x)

Thus z(x) = 0 is even.

(V4) Let f be even. Is −f even?

(−f)(−x)
by 1.
= −[f(−x)]

f even
= −[f(x)]

by 1.
= (−f)(x)

Thus −f is even.

We have shown that all of the properties of a vector space are true for the set of even functions.
Therefore, this set is a vector space.
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