Math 388

Homework \#13

1. Find the characteristic polynomial of each of the following differential equations. Also rewrite each differential equation as a system of first-order linear differential equations and as a matrix equation $\vec{x}^{\prime}=A \vec{x}$. Compare the characteristic polynomial of the original differential equation with the characteristic polynomial of the matrix A.
(a) $a y^{\prime \prime}+b y^{\prime}+c y=0$
(b) $a y^{\prime \prime \prime}+b y^{\prime \prime}+c y^{\prime}+d y=0$
2. From Section 18.4 of the textbook, do problems 1, 2, 3, 4(a,b), 5
3. Consider the matrix

$$
A=\left(\begin{array}{ccc}
-1 & 2 & -3 \\
0 & 3 & 0 \\
2 & 0 & 4
\end{array}\right)
$$

(a) Using the definition of the exponential of a matrix, write out the first 4 terms of e^{A}.
(b) Since A is diagonalizable, write e^{A} in closed form (i.e. as a single matrix whose entries are NOT an infinite sum.)
(Hint: In the previous homework assignment you found the eigenvalues and eigenvectors of A, expressed it as $A=P D P^{-1}$, and used this to find A^{k}.)
4. Consider the matrix

$$
A=\left(\begin{array}{llll}
3 & 0 & 0 & 0 \\
1 & 3 & 0 & 0 \\
0 & 1 & 3 & 0 \\
0 & 0 & 1 & 3
\end{array}\right)
$$

(a) If you use the definition of the exponential of a matrix, $e^{A t}$ is an infinite series. Use the technique we learned in class to express $e^{A t}$ in closed form.
(b) Find the solution to $\vec{x}^{\prime}=A \vec{x}$ with $\vec{x}(0)=(1,2,3,4)$.
(c) Find a basis for the solution space of $\vec{x}^{\prime}=A \vec{x}$.

