Honors Math III Review Guide 2

November 9, 2010

1 Definitions

1. Transformation:

A transformation from a vector space V to a vector space W is denoted by $T: V \to W$ and is a function with domain V and codomain W If $\vec{a} \in V$ and $T(\vec{a}) = \vec{b} \in W$ then \vec{b} is the **image** of \vec{a} under (T)and \vec{a} is the **preimage** of \vec{b}

2. Linear Transformation:

A transformation is linear if: (1) $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$ and (2) $T(c\vec{u}) = cT(\vec{u})$

- 3. Identity Transformation: $T: V \to V$ so that $T(\vec{x}) = \vec{x}$ Notation: I, I_V, T_1
- 4. Zero Transformation: $T: V \to V$ so that $T(\vec{x}) = \vec{0}$ Notation: $Z, 0, 0_V, T_0$
- 5. Scalar Transformation: $T: V \to V$ such that $T(\vec{x}) = c\vec{x}$ Notation: T_c
- 6. Kernal (nullspace): Let $T: V \to W$ be linear, then the kernal of T is:

$$ker(T) = null(T)$$

= { $\vec{x} \in V | T(\vec{x}) = \vec{0}$ }
= set of things that T eats or kills

7. Image (range):

The image of $T: V \to W$ is:

$$Im(T) = image(T)$$

= { $\vec{y} \in W | \exists \vec{x} \in V \text{ such that } T(\vec{x}) = \vec{y}$ }
= set of vectors in W that get hit by T
 $Im(T) = T(V)$

8. Nullity:

 $T: V \to W$ is linear, then: dim(ker(T)) = nullity(T)

9. Rank:

 $T: V \to W$ is linear, then: dim(Im(T)) = rank(T)

10. Isomorphism:

A linear transformation $T: V \to W$ is called an isomorphism if \exists a linear transformation $S: W \to V$ such that $S \circ T(\vec{x}) = \vec{x} \quad \forall \vec{x} \in V$ and $T \circ S(\vec{y}) = \vec{y} \quad \forall \vec{y} \in W$

11. Isomorphic:

 \boldsymbol{V} is isomorphic to \boldsymbol{W} when T is an isomorphism

12. Injective:

T is one-to-one or injective if

$$x \neq y \Rightarrow T(x) \neq T(y)$$

or equivalently,

$$T(x) = T(y) \Rightarrow x = y$$

13. Surjective:

T is surjective if Im(T) = W

14. Bijective:

T is bijective if it is both surjective and injective

15. Ordered Basis:

An ordered basis is a basis with a specific order of the elements

16. Matrix of T relative to basis E:

The matrix of T relative to basis $E = \{\vec{e_1}, \vec{e_2}, \vec{e_3}\}$ is the matrix whose i^{th} column is the coordinates of $T(\vec{e_i})$ and it is denoted by

$$[T]_E = [T(E)]$$

17. Dot Product:

Let $\vec{x} = (x_1, x_2, x_3)$ and $\vec{y} = (y_1, y_2, y_3)$ be in \mathbb{R}^3 . The dot product of \vec{x} and \vec{y} is the real number $\vec{x} \cdot \vec{y} = x_1 y_1 + x_2 y_2 + x_3 y_3$

18. Matrix Product:

Let $A = [a_{ij}]$ be an $m \times n$ matrix and $B = [b_{ij}]$ be an $n \times p$ matrix. Then the matrix product of $AB = [c_{ij}]$ is an $m \times p$ matrix where c_{ij} is the dot product of i^{th} row of A and j^{th} column of B.

19. Upper-Triangular Matrix:

 $A = [a_{ij}]$ such that $a_{ij} = 0$ if i > j

$$A = \left(\begin{array}{rrr} 1 & 4 & 5 \\ 0 & 2 & 6 \\ 0 & 0 & 3 \end{array}\right)$$

20. Lower-Triangular Matrix:

 $A = [a_{ij}]$ such that $a_{ij} = 0$ if i < j

$$A = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 5 & 2 & 0 \\ 4 & 6 & 3 \end{array}\right)$$

21. Diagonal Matrix:

A matrix that is both Upper and Lower Triangular

22. Nilpotent:

A matrix A is called nilpotent (with index k) if $A^k = 0$ for some positive integer k

23. Idempotent:

A matrix A is called idempotent if $A^2 = A$

24. Nonsingular:

A square matrix A is called nonsignular (or invertible) if there is a matrix B such that:

$$AB = I = BA$$

25. Involution, Involutory:

A matrix A is called an involution or involutory if $A = A^{-1}$

26. Transpose:

The transpose of matrix $A = [a_{ij}]$ is $A^{tr} = [a_{ji}]$ Denoted $A^{tr} = A^t = A^T = tranpose(A)$

27. Symmetric:

A matrix A is symmetric if $A = A^{tr}$

28. Skew-Symmetric:

A is skew-symmetric if $A = -A^{tr}$

29. The Matrix of T relative to A and B:

Let $T: V \to W$ be linear, and let A be an ordered basis of V with dim(V) = n, and let B be an ordered basis of W with dim(W) = k. The matrix of T relative to A and B is the $k \times n$ matrix $[T]_A^B$ whose columns are the coordinates of T(A) relative to B.

30. **Projection:**

A linear transformation $T: V \to V$ is a projection iff $T \circ T = T$

31. Nilpotent Transformation:

 $T: V \to V$ is nilpotent of index k is $T^k = 0_V$ and $T^{k-1} \neq O_V$ for some k. (So k is the smallest such value)

32. Cyclic:

 $T: V \to V$ is cyclic if $\exists \vec{x} \in V$ such that $\{\vec{x}, T(\vec{x}), T^2(\vec{x}), \ldots\}$ spans all of V and \vec{x} is called a cyclic vector of T

2 Theorems

- 1. Proposition 8.3.1: If $T: V \to W$ is a linear transformation, then $T(\vec{0}) = \vec{0} (T(\vec{0}_V) = \vec{0}_W)$
- 2. Proposition 8.3.2: If $T: V \to W$ is linear, then $T(a_1\vec{v}_1 + \ldots + a_n\vec{v}_n) = a_1T(\vec{v}_1) + \ldots + a_nT(\vec{v}_n)$
- 3. **Proposition 8.3.3:** If $T: V \to W$ is linear and U is a subspace of V and $T(U) = \{\vec{y} \in W | \exists \vec{x} \in U \text{ with } T(\vec{x}) = \vec{y}\}$ then T(U) is a subspace of W.
- 4. Proposition 8.3.4: Let $T: V \to W$ be linear, then if E is a subset of V then:

T(Span(E)) = Span(T(E))

5. Proposition 8.3.6:

Let $T: V \to W$ and $S: W \to U$ be linear. Then the composition:

$$S \circ T : V \to W \to U$$

is linear also.

6. Proposition 8.4.1:

- $T: V \to W$ is linear then:
- (a) ker(T) is a subspace of V
- (b) Im(T) is a subspace of W

7. Dimension Theorem:

If $T: V \to W$ is linear and V is finite-dimensional, then:

$$dim(V) = rank(T) + nullity(T)$$

8. Proposition:

T is injective $\Leftrightarrow ker(T) = \{\vec{0}\}$

9. Proposition 8.6.1:

Let $T: V \to W$ be linear. Then T is an isomorphism $\Leftrightarrow T$ is injective and surjective $\Leftrightarrow ker(T) = \{\vec{0}\}$ and Im(T) = W

10. Theorem 8.6.4:

Let V and W be finite dimensional vector spaces. then:

$$V \cong (isomorphic)W \Leftrightarrow dim(V) = dim(W)$$

11. **Proposition:**

If A is invertible, then A^{-1} is unique.

12. **Proposition 10.4.1:**

If

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

then A is invertible $\Leftrightarrow ad - bc \neq 0$ If A is invertible, then

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

13. Theorem:

The set of all linear transformations $T: V \to W$ is a vector space and it is denoted L(V, W)

14. Theorem:

Let A be a finite ordered basis for V and let B be a finite ordered basis for W. Let $T, U: V \to W$ be linear

(a) $[T + U]_A^B = [T]_A^B + [U]_A^B$ (b) $[cT]_A^B = c[T]_A^B$

15. Theorem 11.2.1:

Let V and W be vector spaces with dim(V) = n and dim(W) = k with ordered bases B and C respectively.

Then $\Phi: L(V, W) \to M_{k \times n}$ when $\Phi(T) = [T]_B^C$ is an isomorphism.

16. Cor. 11.2.2:

If V, W are finite dimensional vector spaces then dim(L(V, W)) = dim(V)dim(W)

17. Proposition 11.2.3:

Let V, W, U be finite dimensional vector spaces with ordered bases A, B, C respectively. If $T: V \to W$ and $S: W \to U$ are linear, then:

$$[S \cdot T]_A^C = [S]_B^C \cdot [T]_A^B$$

18. Cor.:

Let V, W be finite dimensional vector spaces with dim(V) = n and dim(W) = k and with ordered bases A, B respectively. If $T: V \to W$ is linear and the coordinates of $\vec{x} \in V$ relative to A are x_1, x_2, \ldots, x_n

Then the coordinates of $T(\vec{x})$ relative to B are c_1, \ldots, c_k where

$$\begin{pmatrix} c_1 \\ \vdots \\ c_k \end{pmatrix} = [T]_A^B \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

19. Cor 11.2.4:

 $T: V \to W$ is an isomorphism $\Leftrightarrow [T]_A^B$ with A as a basis for V, B as a basis for W is invertible.

20. Cor 11.2.5:

If A, B are $n \times n$ matrices and AB = I then BA = I

21. Theorem 11.3.1:

Let A, B be $k \times n$ matrices. Let V and W be vector spaces with dim(V) = n, dim(W) = k. A and B represent the same transformation $T: V \to W$ relative to some ordered basis pairs $\Leftrightarrow A = PBQ^{-1}$ for some invertible matrices P and Q

22. Theorem 12.2.1:

If $T: V \to V$ is nilpotent with index k and $\vec{x} \in V$ is a vector such that $T^{k-1}(\vec{x}) \neq 0$, then $\{\vec{x}, T(\vec{x}), T^2(\vec{x}), \dots, T^{k-1}(\vec{x})\}$ is linearly independent.

23. Cor.:

If dim(V) = n and $T : V \to V$ is nilpotent with index k, then $k \leq n$. If k = n, then $\{\vec{x}, T(\vec{x}), \ldots, T^{k-1}(\vec{x})\}$ is a basis for V.

24. **Proposition 12.3.1:**

If $T: V \to V$ is cyclic, dim(V) = n, and \vec{x} is a cyclic vector of T then $\{\vec{x}, T(\vec{x}), T^2(\vec{x}), \ldots, T^{n-1}(\vec{x})\}$ is a basis for V.