Honors Math III Review Guide 2

November 9, 2010

1 Definitions

1. Transformation:

A transformation from a vector space V to a vector space W is denoted by $T: V \rightarrow W$ and is a function with domain V and codomain W
If $\vec{a} \in V$ and $T(\vec{a})=\vec{b} \in W$
then \vec{b} is the image of \vec{a} under (T)
and \vec{a} is the preimage of \vec{b}
2. Linear Transformation:

A transformation is linear if:
(1) $T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v})$ and
(2) $T(c \vec{u})=c T(\vec{u})$
3. Identity Transformation:
$T: V \rightarrow V$ so that $T(\vec{x})=\vec{x}$
Notation: I, I_{V}, T_{1}
4. Zero Transformation:
$T: V \rightarrow V$ so that $T(\vec{x})=\overrightarrow{0}$
Notation: $Z, 0,0_{V}, T_{0}$
5. Scalar Transformation:
$T: V \rightarrow V$ such that $T(\vec{x})=c \vec{x}$
Notation: T_{c}
6. Kernal (nullspace):

Let $T: V \rightarrow W$ be linear, then the kernal of T is:

$$
\begin{aligned}
\operatorname{ker}(T) & =\operatorname{null}(T) \\
& =\{\vec{x} \in V \mid T(\vec{x})=\overrightarrow{0}\} \\
& =\text { set of things that } T \text { eats or kills }
\end{aligned}
$$

7. Image (range):

The image of $T: V \rightarrow W$ is:

$$
\begin{aligned}
\operatorname{Im}(T) & =\operatorname{image}(T) \\
& =\{\vec{y} \in W \mid \exists \vec{x} \in V \text { such that } T(\vec{x})=\vec{y}\} \\
& =\text { set of vectors in } \mathrm{W} \text { that get hit by } T \\
\operatorname{Im}(T) & =T(V)
\end{aligned}
$$

8. Nullity:

$T: V \rightarrow W$ is linear, then:
$\operatorname{dim}(\operatorname{ker}(T))=\operatorname{nullity}(T)$
9. Rank:
$T: V \rightarrow W$ is linear, then:
$\operatorname{dim}(\operatorname{Im}(T))=\operatorname{rank}(T)$

10. Isomorphism:

A linear transformation $T: V \rightarrow W$ is called an isomorphism if \exists a linear transformation $S: W \rightarrow V$ such that $S \circ T(\vec{x})=\vec{x} \quad \forall \vec{x} \in V$ and $T \circ S(\vec{y})=\vec{y} \quad \forall \vec{y} \in W$

11. Isomorphic:

V is isomorphic to W when T is an isomorphism

12. Injective:

T is one-to-one or injective if

$$
x \neq y \Rightarrow T(x) \neq T(y)
$$

or equivalently,

$$
T(x)=T(y) \Rightarrow x=y
$$

13. Surjective:

T is surjective if $\operatorname{Im}(T)=W$

14. Bijective:

T is bijective if it is both surjective and injective

15. Ordered Basis:

An ordered basis is a basis with a specific order of the elements
16. Matrix of T relative to basis E :

The matrix of T relative to basis $E=\left\{\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right\}$ is the matrix whose $i^{t h}$ column is the coordinates of $T\left(\vec{e}_{i}\right)$ and it is denoted by

$$
[T]_{E}=[T(E)]
$$

17. Dot Product:

Let $\vec{x}=\left(x_{1}, x_{2}, x_{3}\right)$ and $\vec{y}=\left(y_{1}, y_{2}, y_{3}\right)$ be in \mathbb{R}^{3}. The dot product of \vec{x} and \vec{y} is the real number $\vec{x} \cdot \vec{y}=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}$

18. Matrix Product:

Let $A=\left[a_{i j}\right]$ be an $m \times n$ matrix and $B=\left[b_{i j}\right]$ be an $n \times p$ matrix. Then the matrix product of $A B=\left[c_{i j}\right]$ is an $m \times p$ matrix where $c_{i j}$ is the dot product of $i^{\text {th }}$ row of A and $j^{\text {th }}$ column of B.
19. Upper-Triangular Matrix:
$A=\left[a_{i j}\right]$ such that $a_{i j}=0$ if $i>j$

$$
A=\left(\begin{array}{lll}
1 & 4 & 5 \\
0 & 2 & 6 \\
0 & 0 & 3
\end{array}\right)
$$

20. Lower-Triangular Matrix:
$A=\left[a_{i j}\right]$ such that $a_{i j}=0$ if $i<j$

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
5 & 2 & 0 \\
4 & 6 & 3
\end{array}\right)
$$

21. Diagonal Matrix:

A matrix that is both Upper and Lower Triangular

22. Nilpotent:

A matrix A is called nilpotent (with index k) if $A^{k}=0$ for some positive integer k

23. Idempotent:

A matrix A is called idempotent if $A^{2}=A$

24. Nonsingular:

A square matrix A is called nonsignular (or invertible) if there is a matrix B such that:

$$
A B=I=B A
$$

25. Involution, Involutory:

A matrix A is called an involution or involutory if $A=A^{-1}$

26. Transpose:

The transpose of matrix $A=\left[a_{i j}\right]$ is $A^{t r}=\left[a_{j i}\right]$
Denoted $A^{t r}=A^{t}=A^{T}=\operatorname{tranpose}(A)$

27. Symmetric:

A matrix A is symmetric if $A=A^{t r}$

28. Skew-Symmetric:

A is skew-symmetric if $A=-A^{t r}$
29. The Matrix of T relative to A and B :

Let $T: V \rightarrow W$ be linear, and let A be an ordered basis of V with $\operatorname{dim}(V)=n$, and let B be an ordered basis of W with $\operatorname{dim}(W)=k$. The matrix of T relative to A and B is the $k \times n$ matrix $[T]_{A}^{B}$ whose columns are the coordinates of $T(A)$ relative to B.

30. Projection:

A linear transformation $T: V \rightarrow V$ is a projection iff $T \circ T=T$
31. Nilpotent Transformation:
$T: V \rightarrow V$ is nilpotent of index k is $T^{k}=0_{V}$ and $T^{k-1} \neq O_{V}$ for some k. (So k is the smallest such value)
32. Cyclic:
$T: V \rightarrow V$ is cyclic if $\exists \vec{x} \in V$ such that $\left\{\vec{x}, T(\vec{x}), T^{2}(\vec{x}), \ldots\right\}$ spans all of V and \vec{x} is called a cyclic vector of T

2 Theorems

1. Proposition 8.3.1:

If $T: V \rightarrow W$ is a linear transformation, then $T(\overrightarrow{0})=\overrightarrow{0}\left(T\left(\overrightarrow{0}_{V}\right)=\overrightarrow{0}_{W}\right)$
2. Proposition 8.3.2:

If $T: V \rightarrow W$ is linear, then $T\left(a_{1} \vec{v}_{1}+\ldots+a_{n} \vec{v}_{n}\right)=a_{1} T\left(\vec{v}_{1}\right)+\ldots+a_{n} T\left(\vec{v}_{n}\right)$
3. Proposition 8.3.3:

If $T: V \rightarrow W$ is linear and U is a subspace of V and $T(U)=\{\vec{y} \in W \mid \exists \vec{x} \in U$ with $T(\vec{x})=\vec{y}\}$ then $T(U)$ is a subspace of W.
4. Proposition 8.3.4:

Let $T: V \rightarrow W$ be linear, then if E is a subset of V then:

$$
T(\operatorname{Span}(E))=\operatorname{Span}(T(E))
$$

5. Proposition 8.3.6:

Let $T: V \rightarrow W$ and $S: W \rightarrow U$ be linear.
Then the composition:

$$
S \circ T: V \rightarrow W \rightarrow U
$$

is linear also.
6. Proposition 8.4.1:
$T: V \rightarrow W$ is linear then:
(a) $\operatorname{ker}(T)$ is a subspace of V
(b) $\operatorname{Im}(T)$ is a subspace of W
7. Dimension Theorem:

If $T: V \rightarrow W$ is linear and V is finite-dimensional, then:

$$
\operatorname{dim}(V)=\operatorname{rank}(T)+\operatorname{nullity}(T)
$$

8. Proposition:
T is injective $\Leftrightarrow \operatorname{ker}(T)=\{\overrightarrow{0}\}$
9. Proposition 8.6.1:

Let $T: V \rightarrow W$ be linear.
Then T is an isomorphism $\Leftrightarrow T$ is injective and surjective

$$
\Leftrightarrow \operatorname{ker}(T)=\{\overrightarrow{0}\} \text { and } \operatorname{Im}(T)=W
$$

10. Theorem 8.6.4:

Let V and W be finite dimenstional vector spaces. then:

$$
V \cong(i s o m o r p h i c) W \Leftrightarrow \operatorname{dim}(V)=\operatorname{dim}(W)
$$

11. Proposition:

If A is invertible, then A^{-1} is unique.

12. Proposition 10.4.1:

If

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

then A is invertible $\Leftrightarrow a d-b c \neq 0$
If A is invertible, then

$$
A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

13. Theorem:

The set of all linear transformations $T: V \rightarrow W$ is a vector space and it is denoted $L(V, W)$

14. Theorem:

Let A be a finite ordered basis for V and let B be a finite ordered basis for W.
Let $T, U: V \rightarrow W$ be linear
(a) $[T+U]_{A}^{B}=[T]_{A}^{B}+[U]_{A}^{B}$
(b) $[c T]_{A}^{B}=c[T]_{A}^{B}$
15. Theorem 11.2.1:

Let V and W be vector spaces with $\operatorname{dim}(V)=n$ and $\operatorname{dim}(W)=k$ with ordered bases B and C respectively.
Then $\Phi: L(V, W) \rightarrow M_{k \times n}$ when $\Phi(T)=[T]_{B}^{C}$ is an isomorphism.
16. Cor. 11.2.2:

If V, W are finite dimensional vector spaces then $\operatorname{dim}(L(V, W))=\operatorname{dim}(V) \operatorname{dim}(W)$
17. Proposition 11.2.3:

Let V, W, U be finite dimensional vector spaces with ordered bases A, B, C respectively. If $T: V \rightarrow W$ and $S: W \rightarrow U$ are linear, then:

$$
[S \cdot T]_{A}^{C}=[S]_{B}^{C} \cdot[T]_{A}^{B}
$$

18. Cor.:

Let V, W be finite dimensional vector spaces with $\operatorname{dim}(V)=n$ and $\operatorname{dim}(W)=k$ and with ordered bases A, B respectively. If $T: V \rightarrow W$ is linear and the coordinates of $\vec{x} \in V$ relative to A are $x_{1}, x_{2}, \ldots, x_{n}$
Then the coordinates of $T(\vec{x})$ relative to B are c_{1}, \ldots, c_{k} where

$$
\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{k}
\end{array}\right)=[T]_{A}^{B}\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)
$$

19. Cor 11.2.4:
$T: V \rightarrow W$ is an isomorphism $\Leftrightarrow[T]_{A}^{B}$ with A as a basis for V, B as a basis for W is invertible.
20. Cor 11.2.5:

If A, B are $n \times n$ matrices and $A B=I$ then $B A=I$

21. Theorem 11.3.1:

Let A, B be $k \times n$ matrices. Let V and W be vector spaces with $\operatorname{dim}(V)=n$, $\operatorname{dim}(W)=k$. A and B represent the same transformation $T: V \rightarrow W$ relative to some ordered basis pairs $\Leftrightarrow A=P B Q^{-1}$ for some invertible matrices P and Q
22. Theorem 12.2.1:

If $T: V \rightarrow V$ is nilpotent with index k and $\vec{x} \in V$ is a vector such that $T^{k-1}(\vec{x}) \neq 0$, then $\left\{\vec{x}, T(\vec{x}), T^{2}(\vec{x}), \ldots, T^{k-1}(\vec{x})\right\}$ is linearly independent.

23. Cor.:

If $\operatorname{dim}(V)=n$ and $T: V \rightarrow V$ is nilpotent with index k, then $k \leq n$. If $k=n$, then $\left\{\vec{x}, T(\vec{x}), \ldots, T^{k-1}(\vec{x})\right\}$ is a basis for V.

24. Proposition 12.3.1:

If $T: V \rightarrow V$ is cyclic, $\operatorname{dim}(V)=n$, and \vec{x} is a cyclic vector of T then $\left\{\vec{x}, T(\vec{x}), T^{2}(\vec{x}), \ldots, T^{n-1}(\vec{x})\right\}$ is a basis for V.

