
222 §7.5
Wrap up on lab 10: (1) do you have a proof for the 0

0
case?

Aside from the 0
0

case, there are several other indeterminate forms. The most similar is the
∞
∞ case, which can be simply interpreted as merely exchanging numerators and denominators.
Happily Bernoulli’s rule works just as well here. As a simple example, try (2) limx→∞

ln x√
x

.
Indeterminate forms arise where there is a conflict in rules. The simplest of these to

see is 0 · ±∞. (3) What is 0 times anything? (4) What is ±∞ times anything? What
happens when they combine? Any answer is possible - the rules no longer hold. Here is an
example: limx→0+ x ln x. In this form, Bernoulli’s rule does not apply. (5) What can be done
to transform this into a quotient without changing its value? (6) Do that, and then apply

Bernoulli’s rule. Afterward you should have limx→0+

1
x

− 1
x2

. Now at this point you might think

to apply again since we are back to ∞
−∞ . Notice if you keep doing that, that this will only

get worse and we will never find an answer. However, at this stage if you simplify algebra
you should quickly see the answer 0. (7) Please do.

Here is another indeterminate form: what number when added to infinity produces infin-
ity? This is the question ∞−∞ and any number could be an answer. Here is an example:
limx→0

1
sin x
− 1

x
. This form is not very workable. (8) How can we transform it into a form

appropriate for Bernoulli’s rule? (9) Please do so and apply the rule. After applying the rule
you should find limx→0

1−cos x
x cos x+sin x

. Notice however this is still a 0
0

form. So, we can apply the

rule one more time. (10) When you do, I hope you will find 0
2

= 0.
The most intriguing and varied indeterminate forms are the exponential forms. The

most important example of this appeared in lab 16. Let’s explore this important example
and then see how it generalises. The example appeared when we were looking at compound
interest. With continuous compounding of an annual rate r we found the yearly rate to be
limn→∞(1 + r

n
)n. Notice that this goes to 1∞. Also notice that one to any power is one, but

any number to the infinite power is infinity. This gives us another indeterminate form, and
we have work to do. Notice the main challenge is that this is not in a fraction form. And the
worst part is the exponent. How do we deal with pesky exponents? Logarithms. How do
we do this without changing the answer? We need to introduce a new variable and then use
logarithms and remember to undo at the end. Let y = limn→∞(1 + r

n
)n. Now we can take

the logarithm of both sides to get ln y = ln limn→∞(1+ r
n
)n = limn→∞ ln((1+ r

n
)n). This first

move works because natural logarithm is a continuous function, so the limit of the function
is equal to the function of the limit. Now for the fun part. (11) What can we do with that
exponent inside of the logarithm? Once that is done we have an∞·0 form, as we saw above.

We need to transform it into a quotient. (12) Do so, and I hope you arrive at limn→∞
ln(1+ r

n
)

1
n

.

Notice this is a standard 0
0

form. It’s not simple, but we’ve been working for a while and
I think we can handle it. (13) Differentiate numerator and denominator, remembering the
chain rule in the numerator. In fact the chain rule is the key, because it produces something
that cancels. (14) Cancel and I hope you are left with limn→∞

r
1+ r

n
. (15) Ok, now what does

this limit go to? That is not our final answer. Remember all of this equals ln y. So for the
last step we have to undo and get our final answer. (16) Do this. Your answer should agree
with the conjecture made in lab 16 (question 2d).

There are many more exponential indeterminate forms. (17) Explain the two rules that



conflict to make each of these indeterminate: 00, ∞0 and 1−∞. (18) Which type are each of

these limits: limx→∞ x1/x , limx→∞
(

x
x+1

)−x
, limx→0+ xx? (19) Complete two of these limits.

If you wish, we can try to work on the third in class.


