
222 §8.3
One of the main reasons we did all that work with trigonometry in §8.2 is that frequently it

is valuable to introduce trigonometry into integrals without trigonometry in order to simplify
them. Reread that sentence. It should surprise you. However, we have seen hints of this
before - notice the two integrals

∫
dx

1+x2 ,
∫

dx√
1−x2 do not have trigonometry in the question,

but they do in the answer.
Let’s get started with

∫
x2

√
1−x2dx. Notice that the square root is really inconvenient.

(1) Why could we do the integral using substitution if the numerator were 2x instead of
x2? The idea here is to use trigonometry to address the square root problem. Remember
1−sin2 θ = cos2 θ, and so if we used 1−x2 = 1−sin2 θ = cos2 θ then we could take the square
root. That’s our big idea for today, which we will see in different forms. One thing that is
very nice about the substitution we do for these problems instead of the old u-substitutions
is that we now make x = sin θ, which makes dx = cos θdθ easier to deal with. Alas, it is
also easier to forget. Make sure that you switch dx into your new variable, or things will go
terribly wrong. Sometimes they will go so terribly wrong that you won’t be able to continue.
That’s nice, in a way, because it’s a good reminder to take care of dx. Ok, let’s finish up this
integral

∫
x2

√
1−x2dx. (2) Make substitutions for x and dx. (3) Use 1− sin2θ = cos2θ and take

the square root you were going to. (4) Cancel in the numerator and denominator. I expect
you’re now at

∫
sin2 θdθ. This should look like §8.2. (5) Finish the integral in terms of θ.

This should be 1
2
θ− 1

4
sin 2θ+C. But, this is not our answer- the question was in terms of x,

not θ, so we need to translate back. Remember x = sin θ, so θ = sin−1 x. What about sin 2θ?
Now we’ll need a few things - our sin 2θ identity, and our work with inverse trigonometry
from §7.6. (6) Perform these steps to find

∫
x2

√
1−x2dx = 1

2
sin−1 x − 1

2
x
√

1− x2 + C. That’s

a long story (and just our first example). To be sure and see that this all worked, (7)
differentiate the answer to check. Yes, these are long.

Getting back to it. Consider
∫

2√
9+x2dx. Again with the square root. But this time

it is different. Remember 1 + tan2 θ = sec2 θ. That should help, but also notice that we
have 9 + x2. (8) So, what do we want for x =? (9) Make the substitution, don’t forget
dx, and then take the square root as you planned it. After canceling you should be left
with

∫
2 secxdx. Perhaps you recall from §8.2 that this is 2 ln(sec θ + tan θ) + C. Again

we revert to inverse trigonometry, after solving for θ. (10) Complete this work to find∫
2√

9+x2dx = 2 ln(x+
√

9+x2

3
) +C. An interesting comparison: consider

∫
2x√
9+x2dx. While this

integral can be done the same way, (11) what is a much shorter way?
Two more examples of methods. Consider

∫
2

x
√

x2−4
dx. Square roots again. Different

again. Remember 1 + tan2 θ = sec2 θ? Well this can also look like sec2 θ − 1 = tan2 θ.
Remembering the 4, this time (12) what do we want for x =? (13) Make the substitution
for x, dx, and simplify to get a quite nice integral

∫
dθ. (14) Finish substitutions to find∫

2
x
√

x2−4
dx = sec−1(x

2
) + C.

Just one more
∫ √

21 + 8x− 4x2dx. One more square root, but this is a step different.
All because of the x term. Notice that it ends with −x2. To use our methods we would
like it to be number − something squared. So, we’re back to completing the square. Here’s
the work, (15) make sure you follow it 21 + 8x − 4x2 = 21 − 4(x2 − 2x) = 21 + 4 −
4(x2 − 2x + 1) = 25 − 4(x − 1)2. So, now we want 4(x − 1)2 = 25 sin2 θ. To get this



to happen we use 2(x − 1) = 5 sin θ and (16) what is dx =? (Don’t forget to divide by
2). (17) Make substitutions to get to

∫
25
2

cos2 θdθ. This should remind you of our first
example. We tread much the same path. (18) Show all work to finish this out to get∫ √

21 + 8x− 4x2dx = 25
4

sin−1(2(x−1)
5

)+ 1
4
(x−1)

√
25− 4(x− 1)2 +C. Be careful that there

are many equivalent forms for this answer.


