Before we get to new material, let's wrap up a the important parts of Lab 19. (1) Generalising one step further, what is $\lim _{n \rightarrow \infty} \frac{n^{k}}{a^{n}}$? (2) 3c from lab - what are the possible limiting behaviours of r^{n}, and for which r do they occur?

222 § 10.2
Let's go back to the first time you worked with infinite series. It was probably long before you're thinking. (3) What is $\frac{1}{3}$ as a decimal? (4) What does that mean?

$$
\frac{1}{3}=0 . \overline{3}=0.3333333 \cdots=3 \times 10^{-1}+3 \times 10^{-2}+3 \times 10^{-3}+\cdots+3 \times 10^{-n}+\cdots
$$

Still, that's a bit much to take in. How do we deal with it? Step by step. Consider:

$$
\begin{aligned}
& s_{1}=0.3 \\
& s_{2}=0.33 \\
& s_{3}=0.333 \\
& s_{n}=0.3333 \cdots 3(\text { with } n 3 \mathrm{~s})=\sum_{k=1}^{n} 3 \times 10^{-k}
\end{aligned}
$$

And so

$$
\frac{1}{3}=\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} 3 \times 10^{-k}=\sum_{k=1}^{\infty} 3 \times 10^{-k}
$$

And, if this sequence converges this is what we mean by $\frac{1}{3}$. Who knew? We'll consider in Lab 20 whether this series converges or not.

Let's consider an even simpler series. What about $s_{n}=\sum_{k=1}^{n} 7$? (5) What is s_{n} in closed form (without a summation symbol or dots, but of course including n)? (6) Now that you have a simple form of s_{n}, what is $\lim _{n \rightarrow \infty} s_{n}$? (7) What if we replace 7 with 0.7 ? (8) What about 0.0000007 ?

Think about $\sum_{k=1}^{n} \frac{k+1}{k}$. (9) What can you say about the terms (the summands that are being added)? Complete the following important statement

$$
\text { If } \lim _{k \rightarrow \infty} a_{k} \neq \quad, \text { then } \sum_{k=1}^{\infty} a_{k} \text { diverges. }
$$

Let's look at a couple more interesting examples what about $s_{n}=\sum_{k=1}^{n} \frac{1}{k(k+1)}$? (10) What can you say about $\lim _{k \rightarrow \infty} \frac{1}{k(k+1)}$? (11) What does the "important statement" say about $\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$? The important answer to question 11 is NOTHING. So, what can we do? (12) Write out a few terms to get started:
$\sum_{k=1}^{n} \frac{1}{k(k+1)}=\frac{1}{1 \cdot 2}+\quad+\quad+\cdots++$
[Notice: Write the first few terms, and then the penultimate and last terms.] Here's a helpful tip - remember partial fractions? Well, it happens that $\frac{1}{k(k+1)}=\frac{1}{k}-\frac{1}{k+1}$. That is useful. Now, (13) complete the following:
$s_{1}=\frac{1}{1 \cdot 2}=\frac{1}{1}-\frac{1}{2}$
$s_{2}=\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}=$
$s_{3}=$
$s_{n}=$
As a consequence of the above, we can now finish: $\sum_{k=1}^{\infty} \frac{1}{k(k+1)}=\lim _{n \rightarrow \infty} s_{n}$, and (14) what does this produce? Ok, we've now seen one example of a series (the name for the sum) converging to a particular value when the terms converge to zero.

Our next example is THE MOST IMPORTANT EXAMPLE OF THE COURSE So, pay attention. Consider the simple-looking series: $s_{n}=\sum_{k=1}^{n} \frac{1}{k}$. Because it is so important, it has a name, the harmonic series. (15) What can you say about $\lim _{k \rightarrow \infty} \frac{1}{k}$? Please remember that from this we know nothing about $s_{n}=\sum_{k=1}^{n} \frac{1}{k}$. It could converge, and it could diverge. Because this is so important, we will see three different arguments for this. So, watch out for more. Here's the first: Suppose $\sum_{k=1}^{\infty} \frac{1}{k}$ did converge to a number, call it S. Then notice the following:

$$
\begin{aligned}
\sum_{k=1}^{\infty}= & S=\left(1+\frac{1}{2}\right)+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}\right)+\left(\frac{1}{7}+\frac{1}{8}\right)+\cdots \\
& >\left(\frac{1}{2}+\frac{1}{2}\right)+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{6}+\frac{1}{6}\right)+\left(\frac{1}{8}+\frac{1}{8}\right)
\end{aligned}
$$

(16) Why is this so? Explain carefully - it's not sophisticated, but make sure you understand. (17) What do you get when you add the terms in parentheses? (18) What variable represents the answer? (19) Why is this a problem? (20) Why does this mean that THE HARMONIC SERIES DIVERGES?

Let's wrap up by returning to our important statement

$$
\text { If } \lim _{k \rightarrow \infty} a_{k} \neq 0 \text {, then } \sum_{k=1}^{\infty} a_{k} \text { diverges. }
$$

we now see that the converse is not true, i.e that

$$
\text { If } \lim _{k \rightarrow \infty} a_{k}=0 \text {, then } \sum_{k=1}^{\infty} a_{k} \text { may converge or diverge. }
$$

To make this clear once more, because it just matters that much: if $\lim _{k \rightarrow \infty} a_{k} \neq 0$, then we're done, and it diverges and nothing more needs to be said. If $\lim _{k \rightarrow \infty} a_{k}=0$ then more work needs to be done. Similar to the $\frac{0}{0}$ case. And this is what makes series interesting, and why we need to be careful.

