
Before we get to new material, let’s wrap up the important parts of Lab 20. First consider

geometric series
∞∑

k=0

ark. To be clear, write out the first 4 terms of this series. (1) What is

the first term? (2) How do you get from one term to the next? Like we have before, please

consider sn =
n∑

k=0

ark. (2) Write out the first four and the last two terms of this finite series

(use dots between). (3) Compute rsn. (4) Compute sn − rsn. (5) Solve for sn, and take the
limit as n goes to infinity. (6) How do your results compare with your experimental results
in lab for question 1e.? Geometric series are one of our most important series. Depending
on how you count, our second or third most important example. Please make sure you have
this information ready.

222 §10.3 The next examples in lab were the p-series:
∞∑

k=0

1
kp . In lab you had some

experiments to deal with them. Here we have a new method to verify for certain. (7) Draw a
picture of a function, f(x), in the first quadrant that is continuous, positive, and decreasing
(use f(x) = 1

x2 if you like, it’s a nice example and will be useful when we get back to the
story). The method we will use applies only to functions that are continuous, positive, and
decreasing. Consider the area computed by

∫∞
1

f(x)dx. (8) Draw in rectangles for both the
left-hand and right-hand approximations (using a base of 1 for each rectangle). You now
have a very important picture. It has three quantities - the integral area, and each of the
two rectangle areas. (9) Which is largest? (10) What is smallest? (11) What sum gives the
area for each of the regions? After all of the above, check to see that you now have:

∞∑
n=2

f(n) ≤
∫ ∞

1

f(x)dx ≤
∞∑

n=1

f(n)

Notice the left and right approximations, as we have seen before, only differ at their end-
points, and since they end at infinity, they only differ at their beginning. (12) Please complete

this equation, which should be apparent by writing out a few terms: ?+
∞∑

n=2

f(n) =
∞∑

n=1

f(n).

(13) Now, solve for
∞∑

n=2

f(n) in terms of
∞∑

n=1

f(n)and substitute it into the above inequality

on the left. This gives:

∞∑
n=1

f(n)− f(1) ≤
∫ ∞

1

f(x)dx ≤
∞∑

n=1

f(n)

That’s all set-up. Here’s the key mindshift. Instead of thinking of this picture and
inequality as a way to approximate the integral, we can think of it as a way to approximate
the sum. Think about this - it’s the same work, but used in the opposite way. (14) To do so,
solve each of the two inequalities for the sum in terms of the integral and then reassemble
the inequality. This should produce:∫ ∞

1

f(x)dx ≤
∞∑

n=1

f(n) ≤ f(1) +

∫ ∞

1

f(x)dx



And notice, suddenly, we have a way to approximate series, as long as we follow the rules
we started with (continuous, positive and decreasing) and we can integrate it. Now, those
are a long list of rules, but there are many examples for which this is quite helpful.

Let’s go back and apply this to our lab examples. (15) What does this say about the case

when
∞∑

n=1

1√
n
? It should completely answer the question. And we should notice something

. . . if the integral diverges (as it does here), the series must diverge as well. (16) What does

it say about
∞∑

n=1

1
n2 ? I hope you find that it converges to some number between 1 and 2. And

then also notice that this isn’t particularly accurate. Can we get more accurate? Yes, we

can. In lab you might have computed that
100∑
n=1

1
n2 = 1.63498390018. We can now combine

this with the integral test for
∞∑

n=101

1
n2 to get a nice approximation.

∫ ∞

101

1

x2
dx ≤

∞∑
n=101

1

n2
≤ 1

1012
+

∫ ∞

101

1

x2
dx

(17) Compute the integral to find

1

101
≤

∞∑
n=101

1

n2
≤ 1

1012
+

1

101

Putting this all together says that

1.63498390018 +
1

101
≤

∞∑
n=1

1

n2
≤ 1.63498390018 +

1

1012
+

1

101

Arithmetic produces 1.64488489028 ≤
∞∑

n=1

1
n2 ≤ 1.64498291989, and that’s pretty accurate.

If you want even more accuracy, you could take the middle, to see that
∞∑

n=1

' 1.64493390509.

One more important thing to settle while we’re here with the integral test. (18) For
which values of p does the integral

∫∞
1

1
xp dx converge? Because of the integral test bounds,

the same is true about the series
∞∑

n=1

1
np . In particular, please note that this provides our

third proof that the harmonic series diverges. Yes, it is that important that we have proven
it three times.


