222 §11.5

This is our very last section. (You probably knew that.) And we get one more visually
compelling argument out of our polar coordinates. Filling in our calculus with polar coor-
dinates, we have area left. To approach area we will think back to how we first did area in
rectangular coordinates. Remember pictures like this:

y=f(x)
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The segments are not quite rectangles, but they become closer to rectangles the more we
take, as if we take a limit we get an exact value using rectangles. So, we think with rectangles
and then switch to an integral to get the exact answer. (1) If we think of Ax as the width of
the rectangles, what gives us the height of these rectangles for any z7 (2) Once you know the
width and the height, what is the area? Sum them to get the total area equal to > f(z)Ax
in terms of rectangles. (3) When we take a limit in order to transition to integrals, what
integral gives us this area? (4) What is the range of z-values for this integral?

For our rectangular integrals, we think of the x values being swept out left-to-right, not
unlike an EKG or a seismograph. For polar coordinates we need a change of perspective.
Now we will think of the 6 values being swept out radially like the hands of a clock, but
counterclockwise. This image is the main idea for today:

Because of the fact that the geometry is fundamentally different for polar coordinates, our
formulas need to fundamentally change. In rectangular coordinates we divided the region
into approximate rectangles. This time we will divide our region into approximate sectors of
circles. Unlike with rectangles, you may not be familiar with the area formula for a sector
of a circle. However, it’s all elementary geometry. (5) What is the area of a circle of radius
r? (6) If a sector has angle ¢ (radians, this is calculus), what fraction of the whole circle is
the sector? (7) So, what is the area of a sector of a circle with radius r and angle 67

Now that we’'ve produced the basic geometry, back to our problem. We pick up with
questions like (1) above: (8) If we think of Af as the angle for the sectors, what gives us the
radius of these sectors for any 67 (9) Once you know the angle and the radius, what is the



area? Sum them to get the total area equal to Y 37(6)2A6 in terms of sectors. (10) When
we take a limit in order to transition to integrals, what integral gives us this area? (11)
What is the range of #-values for this integral? At this point you should have the formula
A= [ Lo,

Ok, that’s our background. (12) Check that the formula agrees with a known result - use
it to compute the area of a circle of radius 4. In lab 24 you considered the three-petal graph
of r = sin 36 and found the 6 values that corresponded to the petal in the first quadrant.
(13) Use those to find the area of that petal.

Now, we’ll move to area between curves. (14) In Calc I how did you find area between
curves? Notice that it comes from (Area under f) - (Area under g). For our polar work
we thus have (Area inside ;) - (Area inside r3), and that this is definitely not the same as
subtracting the radii. We got some set-up in our previous worksheet. Let’s now use it. (15)
Find the area between r =1 and r = 2cos 6.

Last time we thought about the area between r = cos @ and r = sin§. This case is a little
different because of questions about what curves to use. In fact, the answer changes. (16)
What is the radial boundary from 0 to 7/47 (This is the curve that you hit first when you
travel out from the origin in that direction.) (17) What is the radial boundary from 7/4 to
/27 Probably you want to compute this area by computing two separate integrals. (18)
Do so.

The last example on the previous worksheet was looking at the area between r = 2 cos —1
and r = 2. This is even fancier. (19) See what you can do with it on your own, and then
we’ll see what we can do in class. Thank you for reading along all semester. I am grateful
for your attention.



