Mathematics 239 extra solutions to Section 13
$\S 13.2$ is not combinatorial. It is algebra and the anti-point as far as we're concerned.
§13.3 The right hand side counts the number of lists of length n from three elements, with repetition, without one of them. Let's say the three elements are $\{0,1,2\}$. Then what we're looking at is three digit strings and we'll say the one that we're not counting is the one with all zeros. In other words we're looking at n-digit non-zero ternary strings (allowing the opening digits to be zeroes). There are 3^{n} total strings (each digit can be in each place), but if we don't count the one with all zeroes, then there are $3^{n}-1$ such strings.

Now, what about the other side? We're looking at cases because of the sum. The decreasing exponent should give us a clue about decreasing length. Since zero already is a focus, we will think about cases based on how many zeroes the string starts with. If the string does not begin with zero, there are 2 other numbers it could begin with, and then the remaining $(n-1)$ digits can be anything, so we have $2 \cdot 3^{n-1}$. If the string begins with one zero, then there are two other numbers for the next digit, and the remaining $(n-2)$ digits can be anything, so we have $2 \cdot 3^{n-2}$. In the middle, if the string begins with $k-1$ zeros, there are two numbers for the next digit, and the remaining $(n-k)$ digits can be anything, so we have $2 \cdot 3^{n-k}$. This continues to the last case where all but the last digit is zero. The last digit then has two choices, and there a no remaining digits, but it is not wrong to say there are $3^{0}=1$ choices for the remaining digits and it does fit the pattern to say there are $2 \cdot 3^{0}$ strings with all but the last digit zero.

Putting this all together we have

$$
3^{n}-1=\sum_{k=0}^{n-1} 2 \cdot 3^{k}=2 \cdot 3^{n-1}+2 \cdot 3^{n-2}+\cdots+2 \cdot 3^{n-k}+\cdots+2 \cdot 3^{1}+2 \cdot 3^{0}
$$

(which is identical to the text, just commuting the sides and the addition).
The remaining part is mostly silly. So, for that case we're not as much writing a combinatorial proof, but just thinking about numbers. $10^{n}-1$, if you think about it, is a string of n nines. Then in expanded notation, that string of n nines is just $9 \cdot 10^{n-1}+9 \cdot 10^{n-2}+$ $\cdots+9 \cdot 10^{2}+9 \cdot 10^{1}+9 \cdot 10^{0}$. You might notice that there are n places from 0 to $(n-1)$. This is not as important to us as the above combinatorial proof. Perhaps unsurprisingly.
$\S 13.6$ a. The number of two element lists (a, b) where $a \neq b$ is $(n+1) n$ (remember we are working with $0,1, \ldots, n$, which, again, is $n+1$ numbers. In half of them $a<b$ and in half of them $a>b$. We want the first half, so there are $\frac{(n+1) n}{2}$, as desired.
b. is exactly the same as Proposition 17.5, putting $a<b$ allows us to interchange between lists and sets.
§13.7 The text is a little unclear, but it's trying to give us a hint. I will return to the hint, but start with easier side first. n^{2} counts the number of two-element lists from our favourite n-element set.

Now we will approach the left-side. The hint seems to imply we should consider cases based on the largest element in the list. Ok, let's try that. There is only one two-element list where the largest element is 1 , namely 11 . There are three two-element lists where the
largest element is 3 , namely $21,22,12$. And there are five two-element lists where the largest element is 5 , namely $31,32,33,23,13$. In fact, writing that list in an organised fashion gives some clues. Following that pattern we can see that the two-element lists where the largest element is a can be written as $a 1, a 2, a 3, \ldots a(a-1), a a,(a-1) a,(a-2) a, \ldots 2 a, 1 a$. Looking at this we see there are a lists at the beginning (from $a 1$ to $a a$) and a lists at the end (from $a a$ to $1 a$). That gives a total of $2 a$, but the list $a a$ is counted twice, so we have $2 a-1$ two-element lists in which a is the largest. That should be the key step. So, using that reasoning, there are $2 n-1$ lists where the largest element is n. That is the last case.

So, $n^{2}=\sum_{a=1}^{n}(2 a-1)=1+3+5+\cdots+(2 n-1)$ as they both count the number of two-element lists from our favourite n-element set.

