Unions and Intersections of Indexed Sets

A nice idea of work for me . . . write up some notes on unions and intersections of indexed sets to supplement the lack in the text.

Here's the basic idea. Given some indexed sets, I_{a}, the intersection $\bigcap_{a \in A} I_{a}$ is the set of elements in every one of the sets I_{a}. On the other hand, the union $\bigcup_{a \in A} I_{a}$ is the set of elements in at least one of the sets I_{a}.

And now for several examples. Most of our examples will be intervals in \mathbb{R}. Remember $(a, b]=\{x \in \mathbb{R} \mid a<x \leq b\}$.

Consider $S_{n}=(-5, n]$, where $n \in E$, where E is the set of positive even integers. Let's think of this a listing sets first, with intersections we have:

$$
(-5,2] \cap(-5,4] \cap(-5,6] \cap(-5,8] \cap \cdots
$$

In this example the sets are all "nested", i.e. one inside the other. So, the intersection, the elements that are in all of them is the smallest one. Therefore $\bigcap_{n} S_{n}=(-5,2]$. We could say that the union is the largest one, but there is no largest one. That gives us the right idea, though, and as the numbers grow larger this leads us to $\bigcup_{n} S_{n}=(-5, \infty)$.

Next we'll look at $A_{n}=\left(-\frac{1}{n}, \frac{1}{n}\right)$, where n is a positive integer. Again the sets are nested. Listing we have:

$$
\left(-\frac{1}{1}, \frac{1}{1}\right) \bigcap\left(-\frac{1}{2}, \frac{1}{2}\right) \bigcap\left(-\frac{1}{3}, \frac{1}{3}\right) \bigcap\left(-\frac{1}{4}, \frac{1}{4}\right) \bigcap\left(-\frac{1}{5}, \frac{1}{5}\right) \bigcap \cdots
$$

This time, however, the sets are getting smaller. Here, the union is the biggest one, $\bigcup_{n} A_{n}=$ $(-1,1)$, but the intersection requires a little more thought because of the sets getting smaller. The only number that is in all of these sets is zero, therefore the intersection contains only zero, $\bigcap_{n} A_{n}=[0,0]=\{0\}$.

Here are some more similar examples of nested sets where the indexing set is the positive integers:

$$
\begin{aligned}
& B_{n}=\left[2-\frac{1}{n^{2}}, 4+\frac{1}{n^{2}}\right], \bigcap_{n} B_{n}=[2,4], \bigcup_{n} B_{n}=[1,5] \\
& C_{n}=\left[n^{3}, \infty\right), \bigcap_{n} C_{n}=\emptyset, \bigcup_{n} C_{n}=[1, \infty) \\
& D_{n}=\left(0, \frac{1}{n}\right), \bigcap_{n} D_{n}=\emptyset, \bigcup_{n} D_{n}=(0,1)
\end{aligned}
$$

And some different examples: Let $E_{n}=(n, n+1)$, where n is an integer. These sets are disjoint. So, $\bigcap_{n} E_{n}=\emptyset$, and their union misses the integers, so $\bigcup_{n} E_{n}=\mathbb{R} \backslash \mathbb{Z}$.

What if we have a set of elements rather than intervals? Let $F_{n}=\left\{n, n-1, n^{2}\right\}$ for $n \in \mathbb{N}$. In this case the sets are "spread out"; we can find two that don't overlap, $F_{1}=\{1,0,1\}, F_{5}=$ $\{5,4,25\}$, so $\bigcap_{n} F_{n}=\emptyset$, and elements get repeated, leaving us with $\bigcup_{n} F_{n}=\{-1\} \cup \mathbb{N}$.

One last example. Let $G_{n}=\left(\frac{1}{n+3}, \frac{1}{n+1}\right)$ for $n \in \mathbb{N}$. Again, we can separate the sets $G_{0}=\left(\frac{1}{3}, \frac{1}{1}\right)$ and $G_{4}=\left(\frac{1}{6}, \frac{1}{4}\right)$, so $\bigcap_{n} G_{n}=\emptyset$. They do overlap though, and together give us $\bigcup_{n} G_{n}=(0,1)$.

