
Problem Sets

Knots
(K problems are from the Knot Theory book which is scanned an on our course website - some

images must be found there.)
K1.1. If at a crossing point in a knot diagram the crossing is changed so that the section that

appeared to go over the other instead passes under, an apparently new knot is created. Demonstrate
that if the marked crossing in Figure 1.8 is changed, the resulting knot is trivial (draw convincing
pictures - not necessarily Reidemeister moves). What is the effect of changing some other crossing
instead?

K1.2. Figure 1.9 illustrates a knot in the family of 3-stranded pretzel knots; this particular ex-
ample is the (5,−3, 7) pretzel knot. Can you show that the (p, q, r)-pretzel knot is equivalent to
both the (q, r, p)-pretzel knot and the (p, r, q)-pretzel knot (draw convincing pictures - not neces-
sarily Reidemeister moves)?

K1.3 The subject of knot theory has grown to encompass the study of links, formed as the
union of disjoint knots. Figure 1.10 illustrates what is called the Whitehead link. Find a deforma-
tion of the Whitehead link that interchanges the two components (draw convincing pictures - not
necessarily Reidemeister moves). (It will be proved later that no deformation can separate the two
components.)

K1.4 For what values of (p, q, r) will the corresponding pretzel knot actually be a knot, and
when will it be a link? For instance, if p = q = r = 2, then the resulting diagram describe a simple
link of three components, “chained" together.

K1.5 Describe the general procedure for drawing the (p, q)-torus knot. What happens if p and
q are not relatively prime?

K1.6 The link in Figure 1.11 is called the Borrromean rings. It can be proved that no deforma-
tion will separate the components. Note, however that if one of the two components is removed,
the remaining two can be split apart. Such a link is called Brunnian. Can you find an example of a
Brunnian link with more than 3 components?

K1.7 The knots illustrated in Figure 1.12 were, until recently (1970, I believe) assumed to be
distinct, and both appeared in many knot tables. However, a lawyer, Ken Perko, discovered a
deformation that turns one into the other. As a challenging exercise, try to find it (draw convincing
pictures - not necessarily Reidemeister moves).

K2.3.4 Is every polygonal knot with exactly 4 vertices unkotted?
K2.4.4 Show that the trefoil knot can be deformed so that its (nonregular) projection has exactly

one multiple point.
K2.5.2 Any oriented knot, or link, determines an unoriented link. Simply ignore the orienta-

tion. Given a knot, there are at most two equivalence classes of oriented knots that determine its
equivalence class, ignoring orientations. (Why? In particular why could there only be one?)

(a) What is the largest possible number of distinct oriented n component links which
can determine the same unoriented link, up to equivalence? Try to construct an ex-
ample in which this maximum is achieved. (Do not attempt to prove that the oriented
links are actually inequivalent.)
(b) Show that any two oriented links which determine the unlink as an unoriented link
are oriented equivalent.



A knot is called reversible if the two choices of orientation are equivalent.
K2.5.4 Show that the (p, p, q)-pretzel knot is reversible.
K2.5.5 The knot 817 is the first knot in the table that is not reversible, a difficult fact to prove.

Find reversing deformations for some of the knots that precede it. Several are not obvious. Include
some that are not obvious.

K2.5.6 Classically, what has been defined here as the reverse of a knot was called the inverse.
The inverse is now defined as follows. Given an oriented knot, multiplying the z-coordinates of its
vertices by−1 yields a new knot, Km, called the mirror image of the first (this can be easily drawn
by merely changing each of the crossings). The inverse of K is defined to be Kmr (i.e. the reverse
of the mirror image).

(a) How are the diagrams of a knot and its mirror image and inverse related?
(b) Given a knot diagram it is possible to form a new knot diagram by reflecting the
diagram through a vertical line in the plane, as illustrated in Figure 2.8. To what
operation on knots in 3-space does this correspond?
(c) Show that the operation described in part (b) yields a knot equivalent to the mirror
image of the original knot.

K3.1.1 Show that the change illustrated in Figure 3.2 can be achieved by a sequence of two
Reidemeister moves.

K3.1.2 Find a sequence of Reidemeister moves that transforms the diagram of the unknot drawn
in Figure 3.3 into the diagram without crossings. Here is a harder exercise: What is the least
number of Reidemeister moves needed for such a sequence? Can you prove that this is the least
number that suffices?

K3.2.1 Which of the knot diagrams with seven or fewer crossing, as illustrated in a knot table,
are colorable?

K3.2.2 For which integers n is the (2, n)-torus knot in Figure 3.6a colorable? The knot il-
lustrated in Figure 3.6b is called the n-twisted double of the unknot, where 2n is the number of
crossings in the vertical band. The trefoil results when n = −1. What if n = 0 or 1? For which
values of n is the n-twisted double of the unknot colorable?

K3.2.3 Discuss the colorability of the (p, q, r)- pretzel knots.
K3.2.4 (a) Prove the coloring theorem for Reidemeister move 1a.

(b) How many cases need to be considered in proving Theorem 2 for Reidemeister move 3a?
(c) Check each of these cases.
(d) Complete the proof of Theorem 2.

K3.2.5 Given an oriented link of two components, J and K, it is possible to define the linking
number of the components as follows. Each crossing point in the diagram is assigned a sign, +1 if
the crossing is right-handed and −1 if it is left-handed. The linking number of K and J , lk(K, J),
is defined to be the sum of the signs of the crossing points where J and K meet, divided by 2.

(a) Use the Reidemeister moves to prove that the linking number depends only on the
oriented link, and not on the diagram used to compute it.
(b) Figure 3.8 illustrates an oriented Whitehead link. Check that it has linking number
0.
(c) Construct examples of links with different linking numbers.



K3.2.6 This exercise demonstrates that the linking number is always an integer. First note that
the sum used to compute linking numbers can be split into the sum of the signs of the crossing
where K passes over J , and the sum of the crossing where J passes over K.

(a) Use Reidemeister moves to prove that each sum is unchanged by a definition.
(b) Show that the difference of the two sums is unchanged if a crossing is changed in
the diagram.
(c) Show that if the crossings are changed so that K always passes over J , the differ-
ence of the sums is 0. (The link produced by changing these crossings can be deformed
so that K and J have disjoint projections.)
(d) Argue that the linking number is always an integer, given by either of the two sums.
(This is the usual definition of linking number. The definition in Exercise 2.5 makes it
clear that lk(K, J) = lk(J,K).)

K3.2.7 The definition of colorability is often stated slightly differently. The requirement that at
least two colors are used is replaced with the condition that all three colors appear.

(a) Show that the unlink of two components has a diagram which is colorable using all
three colors and another diagram which colorable with exactly two colors.
(b) Why is it true that for a knot, once two colors appear all three must be used, whereas
the same statement fails for links?
(c) Explain why the proof of Theorem 2 applies to links as well as to knots.

K3.2.8 Prove that the Whitehead link illustrated in Figure 3.8 is nontrivial, by arguing that it is
not colorable.

K3.2.9 In this exercise you will prove the existence of an infinite number of distinct knots by
counting the number of colorings a knot has. If a knot is colorable there are many different ways to
color it. For instance, arcs that were colored red can be changed to yellow, yellow arcs changed to
blue, and blue arcs to red. The requirements of the definition of colorability will still hold. There
are six permutations of the set of three colors, so any coloring yields a total of six colorings. For
some knots there are more possibilities.

(a) Show that the standard diagram for the trefoil knot has exactly six colorings.
(b) How many colorings does the square knot shown in Figure 3.9 have?
(c) The number of colorings of a knot projection depends only on the knot; that is, all
diagrams of a knot will have the same number of colorings. Outline a proof of this.
(d) Use the connected sum of n trefoils, illustrated in Figure 3.10, to show that there
are an infinite number of distinct knots.

K3.3.1 Determine which knots with 6 or fewer crossings can be labeled mod 5.
K3.3.2 For what primes p can the trefoil knot diagram be labeled mod p?
K3.3.3 Prove Theorem 3 by showing that if any Reidemeister move is performed on a labeled

diagram, the resulting diagram can again be labeled.
K3.3.4 Show that if all the labels of a knot that is labeled mod 3 are multiplied by 5, the

resulting labeling is a labeling mod 15. This gives some indication as to why p is restricted to
primes.



K3.3.5 If p is 2, other difficulties arise. Explain why no knot can be labeled mod 2. (Modulo
2, what does the crossing relationship say?)

K3.3.6 Check that the theory of labelings applies to links of many components.
K3.3.7 Show that the knots 41, 71, and 816 are distinct by using mod 5 and mod 7 labelings.

(Find mod 5 and mod 7 labelings of 816.)
K3.4.1 For each knot with 6 or fewer crossings find the associated matrix, and its determinant.

In each case, for what p is there a mod p labeling?
K3.4.2 The knots 818 and 924 both have determinant 45. Check that one has a mod 3 rank of 1,

while the other has a mode 3 rank of 2. The knots 88 and 949 both have determinant 25. Compute
their mod 5 ranks.

K3.4.3 Prove the linear algebra results stated in the proof of Theorem 5.
K3.4.4 Because the unknot has some particularly simple diagrams, the arguments given above

really need to be modified slightly. The two diagrams for the unknot that cause difficulties are
the diagram with no crossings, and the diagram with exactly one crossing. What goes wrong in
these cases? Why don’t these problems occur in other situations? How would you correct for these
minor problems? (Define the determinant and nullity of a 0× 0 matrix to be 1.)

K3.4.5 Prove the determinant of a knot is always odd. (See Exercise 5 of the previous section,
relating to mod 2 labelings. Also, this result does not apply for links of more than one component.)

K3.4.6 Show that if a knot has mod p rank n, then the number of mod p labelings is p(pn − 1).
K3.5.1 Compute the Alexander polynomial for several knots in the tables.
K3.5.2 Relate the value of the Alexander polynomial of a knot evaluated at −1 to the determi-

nant of the knot, defined in the previous section.
K3.5.3 Check that Reidemeister move 1a does not change the Alexander polynomial.
K3.5.4 It is possible to construct knots with the same polynomial, but which can be distin-

guished by their mod p ranks for some p. Compute the polynomials of 818 and 924 to check that
they are identical. In Exercies 4.2 of this chapter these knots were distinguished using the mod 3
ranks.

K3.5.5 Show that the knot in Figure 3.18 has Alexander polynomial 1. (This is one of only two
knots with 11 or fewer crossings that has trivial polynomial, other than the unknot.) Use Exercise
5.2 to argue that the knot cannot be distinguished from the unknot using labelings. Stronger tools
can be used to do this.

K3.5.6 Prove that a knot and its mirror image, as illustrated in Figure 3.19, have the same
polynomial. (Hint: Label the mirror image in the obvious way, but reverse its orientation.)

K3.5.7 Show that the Alexander polynomial of K with its orientation reversed is obtained from
the polynomial of K by substituting t−1 for t, and multiplying by the appropriate power of t, and
perhaps changing sign.

O1. Find or draw a 2-component link that is not interchangable (recall that we saw that the
Whitehead link is interchangable). Find or draw a noninterchangable 2-component link with the
property that both components can be straightened into circles. In both of these you do not have
the tools to prove your results (in fact, such tools are not well known among professionals), but be
fairly certain that your results are true from experiment.

O2. The Borromean rings have the property that if you erase any component, they fall apart into
the unlink (disjoint circles that are not connected). Any link with this property is called Brunnian.
Find or draw a 4-component brunnian link. Can you find one with 5-components? n-components?
Research why these are called Brunnian links.



O3. Seifert surfaces are not unique. Draw two nonhomeomorphic Seifert surfaces for the same
knot diagram. This question is not particularly difficult, please do not make it so.

O4. Draw a non-split link (i.e. one that cannot be pulled apart into two pieces) for which there
are Seifert surfaces for each component that are disjoint. Draw the surfaces, then connect them
with a tube to create a Seifert surface for entire link.

O5. Draw two nonhomeomorphic Seifert surfaces for the Borromean rings both produced via
Seifert’s algorithm.

Topological Spaces
1. Let X be a topological space; let A be a subset of X . Suppose that for each x ∈ A there is

an open set U containing x such that U ⊂ A. Show that A is open in X .
2. Let X be a set; let Tc be the collection of all subsets U of X such that X\U either is

countable or is all of X; also let T∞ = {U |X\U is infinite or empty or all of X}. Which of these
are a topology on X?

3. If {Tα} is a collection of topologies on X , which of ∩Tα or ∪Tα is a topology on X?
4. Give an example of a family (Ui)i∈I of open sets of R such that ∩i∈IUi is not open.
5. Give an example of a topology T on R different from the ones we have studied (I think

those are the usual, discrete, indiscrete, and finite complement, but please don’t give an example
we have studied that I merely have forgotten to include). Prove it is a topology.

6. Let X be a set and ≤ an order relation on X . Show that T = {U |U ∈ 2X , x ∈ U and y ≤
x =⇒ y ∈ U} is a topology on X .

7. List all possible topologies on the three-element set {a, b, c}.

Closed, boundary
1. Famous result of Kuratowski: If S is a subset of a topological space X , then there are at

most 14 subsets of X that can be obtained from S by successively taking either complements or
closures. Find a subset S of R such that exactly fourteen subsets of R can be obtained from S in
this manner. (Many hints - ignore them if you’re too cool to need help: Prove these things: S ′′ = S,

S = S, (((S)′))′ = S. For the example, use a subset of R with different types of pieces separated
from each other.)

2. Let S be a subset of a topological space X . A point x ∈ X is a limit point of S if every open
set containing x contains a point of S other than x itself. A point s ∈ S is an isolated point of S if
there is an open set U containing s such that U ∩S = {s}. Show that the set of limit points of S is
closed. Show that S is the disjoint union of the set of limit points of S and the isolated points of S.

3. Let S be a subset of a set X . Describe the closure of S when (i) X has the discrete topology,
(ii) X has the indiscrete topology, and (iii) X has the finite complement topology (all of these are
examples on page 72, numbers 5, 3 and 6, respectively).

4. Give an example of a family (Fi)i∈I of closed sets of R such that ∪i∈IFi is not closed.
5. Prove that a set A is closed if and only if ∂A ⊂ A.
6. Prove that for any set A, ∂A is closed.
7. Let T = {S ⊂ R : 0 ∈ R\S} ∪ {R}. Show that T is a topology on R and find the closure

of the interval A = (1, 2) and of the interval B = (−1, 1).
8. For each n ∈ N, let Sn = {k ∈ X : k ≥ n}. Show that T = {Sn : n ∈ N} ∪ {∅} is a

topology for N, and find the closure of the set of even naturals. Find the closure of the singleton
set A = {100}.



9. Let S and T be topologies for a set X . Prove that S ⊂ T if and only if for every set A ⊂ X ,
it is true that AT ⊂ AS .

10. Show that if U is open in X and A is closed in X , then U\A is open in X , and A\U is
closed in X .

Separation
1. A property of a topological space is hereditary if, whenever a topological space X has that

property, then every subspace of X has the property. Show that the properties of being a T1-space,
Huasdorff space, and regular space are hereditary.

2. Let X have the finite complement topology. When is X a T1-space? When is X a Hausdorff
space?

3. Determine which separation axioms each of the topologies on a three-element set satisfy.
4. Find examples of topological spaces with at least three elements that demonstrate the sepa-

ration axioms are distinct. That is, as we had begun, find an example that satisfies none of them,
an example that is only T1/2, an example that is T1/2 and not T1, and so forth.

5. Prove: A topological space satisfies T1 if and only if every one point set is closed.
6. Show that X is Hausdorff if and only if the diagonal ∆ = {x × x|x ∈ X} is closed in

X ×X .
7. Show that the T1 axiom is equivalent to the condition that for each pair of points of X , each

has an open set not containing the other.

Continuity
1. Prove the following statements about continuous functions and discrete and indiscrete topo-

logical spaces.

(a) If X is discrete, then every function f from X to a topological space Y is continu-
ous.

(b) If X is not discrete, then there is a topological space Y and a function f : X → Y
that is not continuous. Hint: Let Y be the set X with the discrete topology.

(c) If Y is an indiscrete topological space, then every function f from a topological
space X to Y is continuous.

(d) If Y is not indiscrete, then there is a topological spaceX and a function f : X → Y
that is not continuous.

2. Prove that a function f : X → Y is continuous if and only if for each closed set C ⊂
Y, f−1(C) is closed in X .

3. Prove that all open intervals in R (finite, semi-infinite, or infinite) are homeomorphic. Prove
that all half-open intervals in R are homeomorphic.

4. Show that the punctured plane R2\{0, 0} is homeomorphic to the exterior of the closed unit
ball R2\{(x, y) : x2 + y2 ≤ 1}. State and prove an analogous result for Rn.

5. Let X be a topological space and let X0 be the topological space that is the set X with the
finite complement topology. Show that the identity map of X to X0 is continuous if and only if X
is a T1-space.

6. Let (X, T ) be a topological space. Let CX(X) be the set of all continuous functions from
X into X . Prove that if f ∈ CX(X) and g ∈ CX(X) then g ◦ f ∈ CX(X) (this is stated as CX(X)



is stable). Let H(X) be the set of all homeomorphisms of X . Show that H(X) is a group under
the operation of composition.

7. The Pasting Lemma Let X be a topological space with closed subsets A and B such that
X = A ∪ B. Let f : A → Y and g : B → Y be continuous functions such that for each
x ∈ A ∩B, f(x) = g(x). Define a new function f ∪ g : X → Y by

f ∪ g(x) =

{
f(x) for x ∈ A
g(x) for x ∈ B

(1) Prove that f ∪ g is continuous.
(2) Give an example to show that the condition that A and B must be closed is neces-
sary.
(3) Why is this called the pasting lemma?

8. Is the continuous image of a Huasdorff space still Hausdorff? Is Hausdorff a topological
property?

9. Find a function f : R→ R that is continuous at precisely one point.
10. Let f : R→ R be given by f(x) = x3. Show that f is continuous.
11. Suppose i : (X, T ) → (X,S) is the identity function. Prove that i is continuous if and

only if S ⊂ T .
12. Suppose f : X → Y and x ∈ X . The f is said to be continuous at x if the inverse image

of every open set containing f(x) is an open set containing x. Prove that f is continuous if and
only if f is continuous at every x ∈ X .

13. Let {fn : n ∈ F} be a finite collection of continuous functions from X into the space of
real numbers with the usual topology. Let f : X → R be defined by setting f(x) = min{fn(x) :
n ∈ F}. Prove that f is continuous.

14. Suppose f : X → R and g : X → R are continuous functions.

(a) Prove that the function (fg) : X → R defined by (fg)(x) = f(x)g(x) is continu-
ous.
(b) Suppose that g(x) 6= 0 for all x ∈ X . Prove that the function (f/g) : X → R
defined by (f/g(x) = f(x)/g(x) is continuous.

15. An open function takes open sets to open sets. A closed function takes closed sets to closed
sets. Prove or disprove: if f : X → Y is one-to-one, onto, and continuous, then f−1 : Y → X is a
closed function. Are open functions closed, or vice versa?

16. Prove or disprove: If X and Y are homeomorphic and Y and Z are homeomorphic, then
X and Z are homeomorphic.

17. Prove that for functions f : R → R, the ε-δ definition of continuity implies the open set
definition.

Subspaces
1. Consider the set Y = [−1, 1] as a subspace of R. Which of the following sets are open in

Y ? Which are open in R? Justify.

A =

{
x :

1

2
< |x| < 1

}
.



B =

{
x :

1

2
< |x| ≤ 1

}
,

C =

{
x :

1

2
≤ |x| < 1

}
,

D =

{
x :

1

2
≤ |x| ≤ 1

}
,

E =

{
x : 0 < |x| < 1 and

1

x
/∈ Z+

}
.

2. LetX be a topological space, let S be a subspace ofX , and letE be a subset of S. Show that
the subspace topology that E inherits from S coincides with the subspace topology that E inherits
from X .

3. Prove that if A and S are subsets of a topological space X , then the closure of A ∩ S in S
in the subspace topology for S is a subset of the intersection A∩ S, where A is the closure of A in
X . Give an example where the subspace closure of A ∩ S is a proper subset of A ∩ S.

4. Prove that if f : X → Y is continuous and if S is a subspace of X , then the restriction
f |S : S → Y s continuous.

5. Let X and Y be sets such that X ⊂ Y . Suppose T is a topology on X . Show that
W = T ∪ {Y }is a topology on Y and the subspace topology on X as a suspace of (Y,W) is
(X, T ).

6. Show that any set A is both open and closed relative to itself, and that ∅ is both open and
closed relative to A.

7. Give an example of sets B ⊂ A ⊂ R3 where B is open relative to A but not open in R3.
8. Suppose A is a subspace of X . Show that C is closed in A if and only if C = A ∩D for a

closed set D in X .
9. Consider Q ⊂ R with the usual topology. For each of the following sets, tell whether in the

subspace topology the set is open, closed, neither or both: A = {r ∈ Q : 0 < r < 1}, B = {r ∈
Q : 0 < r ≤

√
2}, C = {r ∈ Q : −

√
2 ≤ r ≤

√
2}.

Bases, Products
1. Let X be a topological space with the discrete topology. Find a base B of open sets for X

such that B is included in any other base of open sets for X .
2. Let X and Y be topological spaces and let B be a base of open sets for Y . Show that a

function f : X → Y is continuous if and only if f−1(U) is an open subset of X for every U ∈ B.
3. Let B be the family of subsets of R of the form [a, b), where −∞ < a < b <∞.

(a) Show that B is a base of open sets for a topology T of R. The topology determined
by B is the half-open interval topology.

(b) Show that every open subset of R (in the standard topology) is T -open.

(c) Show that each interval [a, b) is T -closed.



4. Show that if Ej is a closed subset of Xj, 1 ≤ j ≤ n, then E1 × · · · × En is a closed subset
of X1 × · · · ×Xn.

5. Suppose X = X1 × · · · × Xn, where each Xj is nonempty. Prove that if X is Hausdorff,
then each Xj is Hausdorff.

6. Let X be the place, and let B be the collection of all circles centred at the origin, including
the origin itself. Show that B is a base for a topology on X , and find the closure of the square
S = {(x, y) : −1 ≤ x ≤ 1, and− 1 ≤ y ≤ 1}.

7. Suppose U is the usual topology on R. Let I be the collection of all subsets of the irrational
numbers. Let T be the topology generated by U ∩ I. In the topological space (R, T ), find the
closure of the interval (0,

√
2).

8. Let X be the place, and let T be the topology generated by the set of all straight lines
through the origin. In the topological space (X, T ) find the closure of each of the following sets:
A = {(0, 0)}, B = {(1, 1)}, C = {(x, 1) : 0 < x < 1}.

9. Let Z = Π{Xa : a ∈ A} be the product of finitely many topological spaces. Prove or
disprove:

(a) If each Ua is an open subset of Xa, then the product Π{Ua : a ∈ A} is an open
subset of Z.
(b) If each Fa is a closed subset of Xa, then the product Π{Fa : a ∈ A} is a closed
subset of Z.

10. Show that if A is closed in X and B is closed in Y , then A×B is closed in X × Y .
11. When we defined it in class, what we called the product topology is actually the box

topology. They are identical for finite products, but different for infinite products. Here is the
actual product topology:

The product topology on ΠXα has as a basis all sets of the form ΠUα, where Uα is open in Xα

for each α and Uα equals Xα except for finitely many values of α.
Here is another view of the same topology, using another new concept. Any collection of sets

whose union equals the whole space can be a subbasis. From a subbasis we get a basis by taking
finite intersections of subbasis elements. Then we get open sets by taking unions of basis elements,
as always. For the product topology the subbasis is the set of all π−1

α (Uα), where Uα is open in Xα.
Why would we want that? Here is a key theorem. Prove it is true in the product topology but

false in the box topology:

Let f : A → ΠXα be given by the equation f(a) = (fα(a)) where fα : A → Xα for
each α, then the function f is continuous if and only if each function fα is continuous.

Quotients
1. Let ∼ be an equivalence relation on a topological space X . Prove that X/ ∼ is a T1-space if

and only if each equivalence class is closed. Give an example of a T1-space X and an equivalence
relation ∼ such that X/ ∼ is not a T1-space.

2. Let Bn be the closed unit ball in Rn. Prove that the quotient space obtained from Bn by
identifying its boundary Sn−1 to a point is homeomorphic to the n-sphere Sn. Prove this is also
homeomorphic to the identification of two copies of Bn along their boundaries.



3. For n ≥ 1, define P n = Sn/ ∼, where the equivalence relation is defined by declaring
x ∼ y if and only if x = y or x = −y. In other words, P n is obtained from Sn by identifying
pairs of antipodal points. The space P n is called real projective space of dimension n, and it can
be regarded as the set of liens in Rn+1 which pass through the origin. Establish the following
assertions:

(a) P n is a Hausdorff space.
(b) The projection π : Sn → P n is a local homeomorphism, that is each x ∈ Sn

is contained in an open set that is mapped homeomorphically by π onto an open set
containing π(x).
(c) P 1 is homeomorphic to the circle S1.
(d) P n is homeomorphic to the quotient space obtained from the closed unit ball Bn

in Rn by identifying antipodal points of its boundary Sn−1.

4. Describe the space X/ ∼ for the following spaces and equivalence relations:

(1) Find I/ ∼ for X = I = [0, 1] and the equivalence classes defined by

[x] =

{
{x} if 0 < x < 1

0 ∼ 1 if x = 0, 1

(2) X is the unit square {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} with the equivalence classes:

[(x, y)] =

{
{(x, y)} if x 6= 0, 1 and 0 ≤ y ≤ 1

(0, y) ∼ (1, 1− y) if x = 0, 1 and 0 ≤ y ≤ 1

(3) X is the disc D2 = {(x, y) : x2 + y2 ≤ 1}. Let S1 denote the boundary circle:
S1 = {(x, y) : x2 + y2 = 1}. Define equivalence classes of a point (x, y) by

[(x, y)] =

{
{(x, y)} if (x, y) /∈ S1

(x, y) ∼ (1, 0) if (x, y) ∈ S1

(4) X = S1 and (x, y) ∼ (−x,−y) for each (x, y) ∈ S1.

5. Let X be a topological space with an equivalence relation ∼ and let X/ ∼ be the quotient
space. Show that the quotient map p : X → X/ ∼ defined by x 7→ [x] is continuous.

6. Define an equivalence relation on the plane R2 as follows: (x1, y1) ∼ (x2, y2) if x1 +
y2

1 = x2 + y2
2 . Let R2∗ be the identification space resulting from the quotient topology. This is

homeomorphic to a familiar space; what is it? Repeat the previous question for the relation given
by x2

1 + y2
1 = x2

2 + y2
2 .

7. §3.8 3 - do not do this technically, but decipher the question enough to figure out why it is
intuitively believable. Give me a proof by pictures. (Hint: X/Y is the space obtained by starting
with X and identifying all of Y to a point, that is gluing all of Y together into one point.)

8. (a) Let p : X → Y be a continuous map. Show that if there is a conitnuous map f : Y → X
such that p ◦ f equals the identity map of Y , then p is a quotient map.



(b) If A ⊂ X , a retraction of X onto A is a continuous map r : X → A such that r(a) = a for
each a ∈ A. show that a retraction is a quotient map.

Orientability / Bundles
1. Cut a Möbius strip in third lengthwise. What do you get? What if it is cut in fourths or

fifths? Justify a general rule.
2. Think up fun things to do in a nonorientable universe. Write them in a story.
3. Is a projective plane orientable?
4. Draw some pictures of square bundles over circles.
5. Describe two different circle bundles over circles.
6. A solid doughnut is topologically a disk cross a circle (D2 × S1). Describe a disk bundle

over a circle which is not a product.
7. Describe two ways in which S2 × I can be glued up to make an S2 bundle over S1.

Connectedness
1. Prove in detail that connectedness is a topological property.
2. Prove that every connected subset of R is an interval.
3. A point p of a topological space X is a cut point if X\p is disconnected. Show that the

property of having a cut point is a topological property. Use this to prove that no two of the
intervals [0, 1], (0,1), and [0, 1) are homeomorphic.

4. Prove that each connected component of a topological space is closed. Show by counterex-
ample that a connected component of a topological space is not necessarily open.

5. Suppose X = X1 × · · · × Xn, where each Xj is nonempty. Prove that if X is connected,
then each Xj is connected.

6. Let X/ ∼ be the quotient space determined by an equivalence relation ∼ on a topological
space X . Prove that if X is connected, then X/ ∼ is connected.

7. Give examples of sets A and B in R2 which satisfy:

(a) A and B are connected, but A ∩B is not connected.
(b) A and B are connected, but A\B is not connected.
(c) Neither A nor B are connected, but A ∪B is connected.

8. Show that if X is a non-empty topological space with the discrete topology, then the only
connected sets are the singletons. If X is has the indiscrete topology, show that any subset of X is
connected.

9. Show that N is connected in the finite complement topology.
10. State whether each of the following sets is connected; if not connected, find a separation.

(a) A circle with one point deleted; with two points deleted.
(b) An arc of a circle; an arc with its midpoint deleted.
(c) A finite set of points (in the standard topology of R); the singleton set consisting
of a single point; the empty set.

11. Show by an example that the inverse image of a connected set is not necessarily connected.
12. Give an example of two connected sets whose intersection is not connected.



13. Explain whether the points in the plane having at least one rational coordinate form a
connected set; those having exactly one rational coordinate; those having two rational coordinates.
If not connected, show a separation.

14. We have proven if f : [0, 1]→ [0, 1] is continuous, then there is a fixed point f(x) = x. Is
this still true for f : (0, 1]→ f : (0, 1]? Discuss and explain.

15. Consider R with the topology T = {R, ∅, [0, 1]}. Is (R, T ) connected? Explain.
16. Prove or disprove: A function f : [a, b]→ R with a connected graph is continuous.
17. Consider R with the topology T = {U ⊂ R : 0 ∈ U} ∪ {∅}. Is the space (X, T )

connected? How about the subspace X\{∅}? Explain.
18. Let S = {1/n : n ∈ Z+} ∩ {0}. Which components of S are open? Explain.
19. Give an example of a space having no open components, or prove there is no such space.
20. Are R and R2 homeomorphic?

Path-connectedness
1. Prove that any interval of R is path-connected.
2. Prove that path connectedness is a topological property.
3. Prove that if X is path-connected and f : X → Y is a continuous function, then f(X) is

path-connected.
4. SupposeX = X1×· · ·×Xn, where eachXj is nonempty. Prove that ifX is path-connected,

then each Xj is path-connected.
5. Let X/ ∼ be the quotient space determined by an equivalence relation ∼ on a topological

space X . Prove that if X is path-connected, then X/ ∼ is path-connected.
6. Prove: The cartesian product of finitely many path-connected spaces is path-connected.
7. Prove or disprove: If X is a path-connected space and f : X → Y is a continuous function

from X onto a topological space Y , then Y is path-connected.
8. Prove or disprove: If S is a path-connected subset of a space X , and S ⊂ K ⊂ S, then K is

path-connected.
9. Prove or disprove: If C is a collection of path-connected subsets of a space, and if there is a

C∗ in C that meets each C in C, then ∩C is path-connected.

Fundamental group
1. Suppose that (αβ)γ = α(βγ) for any three paths in X for which the product is defined.

Show that each path component of X consists of a single point.
2. Let X be path-connected and let b ∈ X . Show that every path in X is homotopic with

endpoints fixed to a path passing through b.
3. Prove that if there are simply connected open subsets U and V of X such that U ∪ V = X

and U ∩ V is nonempty and path-connected, then X is simply connected.
4. Prove that the product of simply connected spaces is simply connected.
5. Prove that if n ≥ 3, then Rn/{0} is simply connected.
6. Let X be the comb space, that is, the subset of R2 consisting of the horizontal interval

{(x, 0) : 0 ≤ x ≤ 1} and the closed vertical intervals of unit length with lower endpoints at (0, 0)
and at (0, 1

n
), 1 ≤ n < ∞. Show that X is contractible to (0, 0) with (0, 0) held fixed. Show that

X is not contractible to (0, 1) with (0, 1) held fixed.
7. Let (X, x0) and (Y, y0) be pointed spaces. Show that π1(X × Y, (x0, y0)) is isomorphic to

the direct product π1(X, x0)× π1(Y, y0).



8. Classify up to homotopy type: ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890.
Also classify up to homeomorphism.

9. Choose a point x ∈ T 2. Show that the punctured torus T 2\{x} deformation retracts to the
figure-eight space and use this fact to compute π1(T

2\{x}).
10. Prove that homotopy of paths is reflexive and symmetric.
11. Prove that concatenation of homotopy classes of paths is associative. Do so differently

from the book. At least upside down.
12. Let p, q ∈ X and γ : [0, 1]→ X a path from p to q.

a. For a loop α in X based at p, show that γ−1αγ is a loop based at q.
b. Show that the map [α] → [γ−1αγ] is a group isomorphism from π1(X, p) to
π1(X, q).

13. If a space X is simply connected and α and β are any two paths from x0 to x1 in X , show
that α and β are path homotopic. [Hint: Look at [αβ−1] ? [β].]

14. LetA be a convex subset of Rn; that is, assume that for any two points inA the line segment
joining those points is also in A. Show that A is simply connected and, in particular, then Rn is
simply connected.

15. Consider the following loops in S1. For each, find the endpoint of a path α̃ in R1 that
begins at 0 and gets mapped to the given loop by p : R→ S1, p(x) = (cos 2πx, sin 2πx).

a. α(t) = cos 2πnt, sin 2πnt) for 0 ≤ t ≤ 1, n a positive integer.
b. α(t) = cos 2πnt, sin 2πnt) for 0 ≤ t ≤ 1, n a negative integer.

c. α(t) =

{
(cos 4πt, sin 4πt) for 0 ≤ t ≤ 1

2

(cos 4πt,− sin 4πt) for 1
2
≤ t ≤ 1

(This is part of proving π1(S
1) = Z)

16. Let α(t) = cos 2πnt, sin 2πnt) and β(t) = (cos 4πt, sin 4πt), 0 ≤ t ≤ 1, be loops in S1.
Let α̃ be the path for 15a for n = 1. Let ˜̃β be a path in R1 that begins at the point where α̃ ends
and that gets mapped to β by p. What is the endpoint of ˜̃β? If you were to lift the product path αβ
to a path in R1 beginning at 0 and getting mapped by p to αβ, how does its endpoint compare with
that of ˜̃β? (This is part of proving π1(S

1) = Z)
17. a. Show that the circle is a deformation retract of the annulus and of the Möbius band.

(Pictures suffice for this part.) Notice that therefore fundamental group doesn’t detect orientability
b. For the annulus {(x, y)|1 ≤ x2 + y2 ≤ 4}, write out an explicit formula for a homotopy H
taking the annulus to the unit circle.

18. For each of the following spaces, which has a deformation retract of (i) a point, (ii) a circle,
(iii) a figure eight, or (iv) none of these?

a. R3 minus the nonnegative x, y, and z axes
b. R2 minus the positive x axis
c. S1 ∪ {(x, 0)| − 1 < x < 1}, wher S1 is the unit circle in the plane
d. R3

e. S2 minus two points
f. R2 minus three points
g. S2 minus three points
h. T 2 minus a nonseparating simple closed curve



19. Suppose S1 is the unit circle {(x, y, 0)|x2 + y2 = 1} in R3, M is the z axis, and N is the
vertical line given by x = 2 and y = 1.

a. Find π1(R3 M).
b. It is intuitively clear that S1 ∪M and S1 ∪N are different as subsets of R3. Make
this as precise as you can by showing that there does not exist a homeomorphism
h : R3 → R3 such that h(S1 ∪M) = S1 ∪N).

20. Use deformation retracts to give a proof of the Brouwer fixed-point theorem for the disk
D2: If f is a continuous map of the closed unit disk to itself, then f(c) = c for some point c in the
disk. Here’s a start. Suppose f is a conitnuous map from D2 to D2 so that f(x) 6= x for any x.
Take the ray from f(x) to x and define r(x) to be the point where this ray hits the boundary of D2.

21. Use 3. to show that S2 is simply connected. Let Sn = {(x1, . . . xn) ∈ Rn+1|x2
1 + x2

2 +
· · ·+x2

n+1 = 1}. Show that Sn is simply connected whenever n > 1. Use this to show that Rn {0}
is simply connected for n > 2.

Compactness
1. Prove in detail that compactness is a topological property.
2. Show that any space with the finite complement topology is compact.
3. Show that a discrete topological space is compact if and only if it is finite.
4. Show that a continuous real-valued function on a compact space attains its maximum value

and its minimum value. In particular, show that a continuous real-valued function on a compact
space is bounded.

5. Suppose X = X1× · · · ×Xn, where each Xj is nonempty. Prove that if X is compact, then
each Xj is compact.

6. Let X/ ∼ be the quotient space determined by an equivalence relation ∼ on a topological
space X . Prove that if X is compact, then X/ ∼ is compact.

7. Let E be a closed subset of a compact Hausdorff space X . Prove that the quotient space
obtained from X by identifying E to a point is homeomorphic to the one-point compactification
of X\E. (See definition of one-point compactification on p. 172)

8. Show that any space X with the indiscrete topology is compact.
9. Show that the union of two compact sets is compact. Similarly, show the union of any finite

number of compact sets is compact. Give an example of an infinite collection of compact sets
whose union is not copmact.

10. Let X be the closed interval [0, 10] ⊂ R. Show that the set C of all open intervals of R of
length 1 is a covering of X . Find a finite subcollection of C covering X . What is the least number
of such intervals in a covering of X?

11. Find an expanding sequence of open subsets U1, U2, · · · , Uk, · · · of the half-open interval
X = [0, 1) whose union is X but no one of them is all of X .

12. A topological space X is said to be locally compact if each point x in X has a compact
set N containing an open set U containing x for each x [thus x ∈ open U ⊂ compact N ]. Prove
that the real line and Rn are locally compact. (This is restated §5.4 2 FYI, a neighbourhood is a set
containing an open set containing the point.)

13. Let X be a locally compact Hausdorff space. Take some object outside X , call it ∞.
Consider Y = X ∪ {∞}. Create a topology on Y by defining the collection of open sets in Y to
be all sets of the following types:



(1) U , where U is an open subset of X ,
(2) Y \C, where C is a compact subset of X .

Y is called the one-point compactification of X . Prove that this in fact defines a topology on Y .
Prove that Y is compact. Prove that the one-point compactification of R is homeomorphic to S1.
(This is a restatement of §5.4 3)

14. Prove or disprove:

(a) The intersection of a collection of compact subset of a space is compact.
(b) The intersection of a collection of compact subsets of a Hausdorff space is compact.

15. Suppose f : X → Y is a continuous function from one compact Hausdorff space onto
another. Suppose further that for each y ∈ Y, f−1(y) is connected. Prove that if K is compact and
connected, then f−1(K) is compact and connected.

16. Suppose (X, T ) is a compact Hausdorff space. Prove that if S is any Hausdorff topology
for X such that S ⊂ T , then S = T .

Surfaces
1. Figure out intrinsic ways to distinguish R2, S2, T 2, and the Möbius band.
2. Prove that P 2 is a sphere S2 with a disc removed and a Möbius band glued in its place.
3. Prove that the connected sum of two surfaces is a surface, and that for any surface F ,

F#S2 = F .
4. What surface does one obtain from a Möbius band if one shrinks the boundary circle to a

point.
5. Compute the Euler characteristics for the torus, projective plane, Klein bottle, cylinder, and

Möbius band.
6. Prove χ(F1#F2) = χ(F1) + χ(F2) − 2 for any surfaces F1 and F2. Calculate the Euler

characteristic of the n-handled torus and the connected sum of n projective planes.
7. What is the largest number of pairwise disjoint simple closed curves in nT 2 such tat cutting

nT 2 along these curves gives a single path-connected piece?
8. §5.7 4 (finish 4 by showing that K = P#P )
9. Identify the surface represented by this code: CBB−1ADA−1C−1D−1. Identify the surface

represented by this code: EECBB−1ADA−1C−1D−1 (ahh, that changes everything!)
10. List all surfaces with non-negative Euler characteristic.
11. Identify the surface represented by the code: A1A2 · · ·AnA−1

1 A−1
2 · · ·A−1

n . (Distinguish
between n even and n odd).

12. Identify the surface represented by the code: A1A2 · · ·AnA1A2 · · ·An. (Distinguish be-
tween n even and n odd).


