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Intﬁition/Proof/Certainty

There’s an old joke about a theory so perfectly general it had no possible appli-
cation. Humanist philosophy is applicable.
: From the humanist point of view, how would one investigate such knotty
- problems of the philosophy of mathematics as mathematical proof, mathematical
. intuition, mathematical certainty? It would be good to compare the humanist
- method with methods suggested by a Platonist or formalist philosophy, but I am
really not aware how either of those views would lead to a method of philosoph-
ical investigation. A humanist sees mathematics as a social-cultural-historic activ-
ity. In that case it’s clear that one can actually look, go to mathematical life and
see how proof and intuition and certainty are seen or not seen there.

What is proof? What should it be? Old and difficult questions.

Rather than, in the time-honered way of philosophers; choose a priori the
right definitions and axioms for proof, I attempt to look carefully, with an open
mind. What do mathematicians (including myself) do that we call proving? And
what do we mean when we talk about proving? Immediately I observe that
“proof” has different meanings in mathematical practice and in logico-philo-
sophical analysis. What’s worse, this discrepancy is not acknowledged, especially
not in teaching or in textbooks. How can this be? What does it mean? How are
the two “proofs” related, in theory and in practice? :

The articles on intuition and certainty, and half a dozen more in the next
chapter, are in the same spirit. ’

“Call this philosophy? Isn’t it sociology?”

The sociologist studying mathematics comes as an outsider—presumably an

objective one. I rely, not on the outsider’s objectivity, but on my insider’s experi-

ence and know-how, as well as on what my fellow mathematicians do, say, and
write. I watch what’s going on and I understand it as a participant.
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This is not sociology. Neither is it introspection, that long discredited way to
find truth by looking inside your own head. My experience and know-how
aren’t isolated or solipsistic. They’re part of the web of mutual understanding of
the mathematical community.

There used to be a kind of sociology called “Verstehen.” That was perhaps
close to what I’ve been talking about. But my looking and listening with under-
standing isn’t an end in itself. It’s a preparation for analysis, criticism, and con-
nection with the rest of mathematics, philosophy, and science. That’s why I call
it philosophy.

Proof

The old, colloquial meaning of “prove” is: Test, try out, determine the true state
of affwirs (as in Aberdeen Proving Ground, galley proof, “the proof of the pud-
ding,” “the exception that proves the rule,” and so forth.) How is the mathe-
matical “prove” related to the old, colloquial “prove”?

We accuse students of the high' crime of “not even knowing what a proof is.”
Yet we, the math teachers, don’t know it either, if “know” means give a coher-
ent, factual explanatien. (Of course, we know how to “give a proof” in our own
specialty.) .

The trouble is, “mathematical proof” has two meanings. In practice, it’s one
thing. In principle, it’s another. We show students what proof is in practice. We
tell them what it is in principle. The two meanings aren’t identical. That’s O.K.
But we never acknowledge the discrepancy. How can that be O.K.?

Meaning number 1, the practical meaning, is informal, imprecise. Pmctzml
mathematical proof is what we. do to make each other believe our theovems. It’s argu-
ment that convinces the qualified, skeptical expert. It’s done in Euclid and in
The International Avchive Journal of Absolutely Pure Homology. But what is it,

“exactly? No one can say.

Meaning number 2, theoretical mathematical proof, is formal. Aristotle
helped make it. So did Boole, Peirce, Frege, Russell, Hilbert, and Godel. It’s
transformation of certain symbol sequences (formal sentences) according to cer-
tain rules of logic (modus ponens, etc). A sequence of steps, each a strict logical
deduction, or readily expanded to a strict logical deduction. This is supposed to

. be a “formalization, idealization, rational reconstruction of the idea of proof” (P.
el el P

Ernest, private communication).

Problem A: What does meaning number 1 have to do with meaning number 22
Problem B: How come so few notice Problem A? Is it uninteresting? Embarrassing?
Problem C: Does it matter? ‘

Problem C is easier than A and. B. It matters, morally, psychologically, and
philosophically.
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When you’re a student, professors and books claim to prove things. But they
don’t say what’s meant by “prove.” You have to catch on. Watch what the pro-
fessor does, then do the same thing.

Then you become a professor, and pass on the same “know-how” without
“knowing what” that your professor taught you.

There is an official, standard viewpoint. It makes two interesting assertions.

Assertion 1. Logicians don’t tell mathematicians what to do. They make a theory
out of what mathematicians actually do. Logicians supposedly study us the way
fluid dynamicists study water waves. Fluid dynamicists don’t tell water how to
wave. They just make a mathematical model of it.

A fluid dynamicist studying water waves usually does two things. In advance,
seek to derive a model from known principles. After the fact, check the behavior
of the model against real-world data.

Is there a published analysis of a sample of practical proofs that derives “rigor-
ous” proof as a model from the properties of that sample? Are there case studies
of practical proof in comparison with theoretical proof? I haven’t heard of them.
The claim that theoretical proof models practical proof is an assertion of belief.
It rests on intuition. Gut feeling.

You might say there’s no need for such testing of the logic model against
practice. If a mathematician doesn’t follow the rules of logic, her reasoning is
simply wrong. I take the opposite standpoint: What mathematicians at large
sanction and accept és correct mathematics. Their work is the touchstone of

" mathematical proof, not vice versn. However that may be, anyone who takes a
look must acknowledge that formal logic has little visible resemblance to what’s
done day to day in mathematics.

It commonly happens in mathematics that we believe something, even with-
out possessing a complete proof. It also sometimes happens that -we don’t
believe, even in the presence of complete proof. Edmund Landau, one of the
most powerful number theorists, discovered a remarkable fact about analytic
functions called the two constants theorem.** He proved it, but couldn’t
believe it. He hid it in his desk drawer for years, until his intuition was able to
accept it (Epstein and Hahn, p. 396n). .

There’s a famous result of Banach and Tarski,** which very few can believe,
though all agree, it has been proved.

Professor Robert Osserman of Stanford University once startled me by
reporting that he had heard a mathematician comment, “After all, Riemann
never proved anything.” Bernhard Riemann, German (1826 —1866), is univer-
sally admired as one of the greatest mathematicians. His influence is deeply felt
to this day in many parts of mathematics. I asked Osserman to explain. He did:

“Clearly, it’s not literally true that Riemann never proved anything, but what
is true is that his fame derives less from things that he proved than from his other
contributions. I would classify those in a number of categories. The first consists
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of conjectures, the most famous being the Riemann Hypothesis about the zeros
of the zeta function. The second is a number of definitions, such as the Riemann
integral, the definition of an analytic function in terms of the Cauchv-Riemann
equations (rather than via an ‘analytic’ expression), the Riemann curvature ten-
sor and sectional curvature in Riemannian geometry. The third, related to the
second, but somewhat different, consists of new concepts, such as a Riemann
surface and a Riemannian manifold, which involve radical rethinking of funda-
mental notions, as well as the extended complex plane, or Riemann sphere, and
the fundamental notions of algebraic curve. The fourth is the construction of
important new examples, such as Riemann’s complete periodic embedded mini-
mal surface and what we now call hyperbolic space, via the metric now referred
to as the ‘Poincaré metric’, which Riemann wrote down explicitly. And finally,
there is the Riemann mapping theorem, whose generality is simply breathtaking,
and again required a depth of insight, but whose proof, as given by Riemann,
was defective, and was not fully established until many years later. Perhaps one
could combine them by saying that Riemann was a deep mathematical thinker
whose vision had a profound impact on the future of mathematics.”

Many readers have not heard of all these contributions of Riemann. But this
example is enough to refute the catch-phrases. “A mathematician is someone
who proves theorems” and “Mathematics is nothing without proof.”

As a matter of principle there can’t be a strict demonstration that Meaning 2,
formal proof, is what mathematicians do in practice. This is a universal limitation
of mathematical models. In principle it’s impossible to give a mathematical proof
that a mathematical model is faithful to reality. All you can do is test the model
against experience.

The second official assertion about proof is:

Assertion 2. Any corvect practical proof can be filled in to be o correct theovetical

proof.

“If you can do it, then do it!”
“Tt would take too long. And then it would be so deadly boring, no one

" would read it.”z

Assertion B is commonly accéptcd. Yet I’ve seen no practical or theoretical
argument for it, other than absence of counter-examples. It may be true. It’s a
matter of faith. o

Take a mathematically accepted proof and undertake to fill in the gaps, turn it
into a formal proof. If you meet no obstacles, very well! And if you do meet an
obstacle? That is, a mathematically accepted step that you can’t break down into
successive modus ponens? You’ve discovered an implicit assumption, a hidden
lemma! Join it to the hypotheses of the theorem and go merrily forward.

If this is what’s meant-by formalization of proof, it can always be done. There’s
a preassigned way around any obstacle! There remains one little worry. Is your
enlarged set of assumptions consistent? This can be hard to answer. You may say,
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if there’s doubt about their consistency, it was wrong to claim the original proof

was correct. On the other hand, we don’t even know if the hypotheses of our

number system are consistent. We presume it’s O.K. on pragmatic grounds.

No one has proved that definition 2, the logic model of proof, is wrong. If a
counter-example were found, logic would adapt to accommodate it.

By “proof” we mean correct proof, complete proof. By the standards of for-
mal logic, ordinary mathematical proofs are incomplete. When an ordinary
mathematical proof is offered to a referee, she may say, “More detail is needed.”
So more detail is supplied, and then the proof is accepted. But this acceptable
version is still incomplete as a formal proof! The original proof was mathemati-
cally incomplete, the final proof'is mathematically complete, but &oth are for-
mally incomplete. The formal concept of proof is urelcvant at just the point of
concern to the mathematician!

We prefer a beautiful proof with a serious gap over a boring hyper-correct
one. If the iden is beautiful, we think it will attain valid mathematical expression.
We even change the meaning of a concept to get a more beautiful theory. Pro-
jective geometry is a classic example. Euclidean geometry uses the familiar
axiom, “Two points determine a line, and two lines determine a point, unless the
lines ave parallel.” Projective geometry brings in ideal points at infinity—one
point for each family of parallel lines. The axiom becomes: “Two points deter-
mine a line, and two lines determine a point.” This is “right.” The Euclidean
axiom by comparison is awkward and clumsy.

When a mathematician submits work to the critical eyes of her colleagues, it’s
being tested, or “proved” in the old sense. With few exceptions, mathematicians
have no other way to test or “prove” their work—invite whoever’s interested to
have a shot at it. Then the mathematical “Meaning number 1” of “proof™ agrees
with the old meaning. The proof of the pudding is in the eating. The proof'of the
theorem (in that sense of being tested) is in the refereeing,.

Philosophers call this social validation “warranting.”

Computers and Proof

In the late 1970s or early 1980s, while visiting a respected engineering
school, I was told that the dean was vexed with his mathematicians. Other pro-
fessors used his computer center; mathematicians didn’t. Today no one’s com-
plaining that mathematicians don’t compute. We were just 10 or 15 years late.

The issue about proof today is the impact of computers on mathematical
proof. The effects are complex and manifold. I describe 2 trends, 3 cxamples 2
critics, and 5 reasons.

First, two trends: (Trend A) Computers are being used as aids in proving the-
orems; and (Trend B) computers are encroaching on the central role we give
proof in mathematics.
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Three examples of trend A:

Example 1. In 1933, before general-purpose computers were known, Derrick
Henry Lehmer built a computer to study prime numbers. It collected number-
theoretic data and examples, from which he formulated conjectures. This was a
mechanization of Lagrange and Gauss, who conjectured the prime number the-
orem from tables of prime numbers.

Example 2. Wolfgang Haken and Kenneth Appel’s proof that a plane map
needs at most four colors. The conjecture had been in place since 1852. Appel
and Haken turned it into a huge computation. Then their computer did the
computation. Thus they proved the conjecture.

Example 3. In the Feigenbaum-Lanford discovery of a universal critical point
for doubling of bifurcations, computers played two distinct essential roles.
Mitchell Feigenbaum discovered the universal critical point by computer explo-
ration, comparable to Lehmer’s number-theoretic explorations. Later, rigorous
proofs were given by Oscar Lanford III (9, 10, 11) and by M. Campanino, H.
Epstein, and D. Ruelle. At that stage the computer played a role like its role in
the four-color problem: assistant in completing the proof.

Now the proof wasn’t algebra but analysis. A certain derivative had to be esti-
mated. This was accomplished by the computer, using approximation methods
from numerical analysis, with a rigorous error estimate.

Example 1, Lehmer’s exploratory use, didn’t challenge the standard notion of
proof. That notion doesn’t care how-a conjecture is made. I heard a distinguished
professor tell his class, “It doesn’t matter if you find the answer lying in a mud
puddle. If you prove it’s the answer, it makes no difference how you found it.”

Examples 2 and 3 are different. Now the machine computation is part of the
proof. For some people, such a proof violates time-honored doctrines about the
difference between empirical knowledge and mathematical knowledge. Accord-

ing to Plato, Kant, and many others, common knowledge and scientific knowl-

edge are a posteriori. They come from observation of the material world.
Mathematical knowledge is a.pﬁori—indepcndcnt of contingent facts about the
material world. Daily experience and physical experiment could conceivably be
other than what they are, but mathematical truths will hold in every possible
world, or so thought Plato and Kant. .

The operation of computers depends on properties of copper and silicon, on

-+ electrodynamics and quantum mechanics. Confidence in computers comes from

confidence in physical facts and theories. Thesc are not a priori. We learn the
laws of physics and the electrical properties of silicon and copper from experi-
ence. It seems, then, that while old-fashioned theorems proved “by hand” are a
priori, computer-assisted theorems are a posteriori! (Philip Kitcher thoroughly
goes into the issue ofa priori knowledge in mathematics.)

But despite the illusions of idealist philosophy, old-fashioned person-made
proofs are also a posteriori. They depend on credence in the world of experi-
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ence, the material world. We believe our scribbled notes don’t change from

hour to hour, that our thinking apparatus—our brain—is reliable more often

than not, that our books and journals are what they pretend to be. We some-
.times believe a proof without checking every line, every reference, and every
" line of every reference. Why? We depend on the integrity and competence of
certain human beings—our colleagues. But human beings are /Jess reliable at
long computations than a Cray or a Sun! And still less in collaborations by large
groups, as in the classification theorem of simple finite groups. Recognizing
this’demolishes the dream of a priori knowledge in advanced mathematics, and
in general.

Most mathematicians see the difference between computer-assisted proofs
and traditional proofs as a difference of degree, not of kind. But Paul Halmos
does object to the Haken-Appel proof. “I do not find it easy to say what we
learned from all that. We are still far from having a good proof of the Four Color
‘Theorem. I hope as an article of faith that the computer missed the right con-
ceptand the right approach. 100 years from now the map theorem will be, I
think, an exercise in a first-year graduate course, provable in a couple of pages by
means of the appropriate concepts, which will be completely familiar by then.
‘The present proof relies in effect on an Oracle, and I say down with Oracles!
" They are not mathematics.”

- 'Why does Halmos call the computer an Oracle? He can’t know every step in
‘the. calculation. Indeed, the physical processes that make computers work aren’t
fully understood. Believing a computer is like believing a successful, well-reputed
fortune teller. Should we regard the four-color conjecture as true? Should our
confidence in it be increased by the Appel-Haken proof? Halmos doesn’t say.

<. Halmos dislikes the Appel-Haken proof because it uses an Oracle, and
because, he thinks, we can’t learn anything from it. His criticism isn’t for logical
defects—incompleteness, incorrectness, or inaccuracy. It’s esthetic and episte-
mological. This is normal in real-life mathematics. It would be sensclcss in for-
malized or logicized mathematics.

:"Views like Halmos were also vented by Daniel Cohen. “Our pursuit is not the
accumulauon of facts about the world or even facts about mathematical objects.
The mission of mathematics is understanding. The Appel and Haken work on
the Four Color Problem amounts to a confirmation that a map-maker with only
four paint pots will not be driven out of business. This is not really what mathe-
maticians were worried about in the first place. Admitting the computer shenani-
gans of Appel and Haken to the ranks of mathematics would only leave us
intellectually unfulfilled.”

;~The eloquence of Halmos and Cohen won’t deter mathematicians who hope
a-computer will help on their problem. Computers in pure mathematics will

increase for at least five reasons.
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Reason 1. Access to more powerful computers spreads ever more widely.

Reason 2. As oldsters are replaced by youngsters schooled after the computer
revolution, the proportion of us at home with computers rises.

Reason 3. Despite the scolding of Halmos, Cohen, and sympathizers, success
like that of Haken-Appel and Lanford inspires emulation.

Reason 4. Scientists and engineers were computerized long ago. You can’t imag-
ine a mathematician interacting with a scientist or engineer today without a
computer.

Reason 5. Reasons 1, 2, 3, and 4 stimulate those branches of mathematics that
use computation, leaving the others at a disadvantage. This reinforces Rea-
sons 1,2, 3, and 4.

Some will still reject computer proofs. They’ll have as much effect as old King
Canute. (By royal order, he commanded the tide to turn back.)

In fields like chaos, dynamical systems, and high Reynolds number fluid
dynamics, we come to trend B. Here, as in number theory, the computer is an
explorer, a scout. It goes much deeper into unknown regions than rigorous
analysis can. In these fields We no longer think of computer-obtained knowl-
edge as tentative—pending proper proof. We prove what we can, compute
what we can. This part of mathematical reality rests on computation and
analysis closely yoked together. The computer finds “such and such.” We
believe it—not as indubitable, but as believable. Proof of “such and such”
then would help us see why it’s so, though not perhaps increase our convic-
tion it 4s so.

This effect of computers, Trend B, is profound. It erodes the time- honored
understanding of what mathematics is. Machine computation as part of proof is
radical, but still more radical is machine computation accepted as empirical evi-
dence of mathematical truth, virtually a weak form of proof. Such acceptance con-
tradicts the official line that mathematics is deductions from axioms. It makes
mathematics more like an empirical science.

An interesting proposal to control this disturbing new tendency was made in
the Bulletin of the American Mathematical Society by the distinguished mathe-
matical physicist Arthur Jaffe and the distinguished topologist Frank Quinn.
They want to save rigorous proof, the chief distinction of modern mathematics,

‘from promiscuous contamination with mere machine calculations. Yet they

acknowledge that “empirical” or “experimental” computer mathematics will not
go away, and may have a place in the world. Their solution is—compulsory rigid

" distinction between the two. Genuine mathematics stays as it should be. Experi-

mental or umerical or empirical mathematics is labeled appropriately. Analo-
gous to kosher chickens versus non-kosher. I don’t have the impression that this
proposal met with general acclaim.
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A different departure from traditional proof was found by Miller (1976),
Rabin (1976), Davis (1977), and Schwartz (1980). There’s now a way to say of
an integer » whose primality or compositeness is unknown, “On the basis of
available information, the probability that # is prime is p.” If # is really prime,
you can make p arbitrarily close to 1. Yet the primality of a given # is %oz a ran-
dom variable. # either is prime or it isn’t. But if # is large, finding its primality by
a deterministic method is so laborious that random errors must be expected in
the computation. Rabin showed that if # is very large, the probability of error in
the deterministic calculation is greater than the probability g in his fast proba-
bilistic method!

How will we adjust to such variation in proof? We can think of proofs as hav-
ing variable quality. Instead of “proved,” label them either “proved by hand” or
“proved by machine.” Even provide an estimate for the reliability of the machine
calculation used in a proof (Swart, 1980).

There are two precedents for this situation. Between the world wars, some
mathematicians made it a practice to state explicitly where they used the axiom
of choice. And in 1972 Errett Bishop said the clash between constructivists and
classicists would end if classicists stated explicitly where they used the law of the
excluded middle (L. E. M.). (Constructivists reject the L. E. M. with respect to
infinite sets.) These issues didn’t involve computing machines. They involved
disagreement about proof.

If experience with the axiom of choice and the L. E. M. is indicative, Swart’s
proposal is unpromising. Nobody worries any more about.the axiom of choice,
and few worry about the L. E. M. Perhaps we don’t care much about distinc-
tions of quality or certainty in proof. Perhaps few care today if proofs are hand-
made or computer-made.

There’s a separate trend in computer proof, that so far has had more reso-
nance in computer science than in main-line mathematics. In this trend, the idea
is not to use the computer to supply a missing piece of a mathematician’s proof.
Rather, the computer-is a logic assistant. Give it some axioms, and send it out to
find interesting theorems. Of course, you have to give it a way to measure
“interesting.” Or tell it what you want proved—a conjecture you haven’t-
proved yourself, or a proved theorem, to see what different proof it might find.

Since the computer is expected to follow the rules of logic, the relation to
definition 2 is apparent. Since it really does find proofs that convince mathe-
maticians, it conforms to definition 1. People who think mathematicians will
become obsolete have this kind of thing in mind-—computer proofs of real
theorems.

Professor Wos writes movingly, “We have beaten the odds, done the impossi-
ble, automated reasoning so effectively that our programs have even answered
open questions. Yet skeptics still exist, funding is not abundant, and recognition
of our achievements is inappropriately small and not sufficiently widespread.”
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This work can be regarded as practical justification of the formal logic notion
of proof. To the extent that computers following only the rules of formal logic
do reproduce discoveries of live mathematicians, they show that formal logic is
an adequate model of real live proof. But “technical limitations” restrict auto-
mated proof to relatively simple theorems. ‘

There are centers of this research in Austin, Texas, and at Argonne National
Laboratory. There is a Journal of Automated Rensoning. Bledsoe and Loveland is
an instructive and readable review.

Pve said nothing about applied mathematics. In applied mathematics, infiltra-
tion and domination by computers has long been a fait accompli. Under the influ-
ence of computers, pure mathematics is becoming more like applied mathematics.

Fallibility

Philosophical discussions of mathematical proof usually talk about it only as it’s
seen in journals and textbooks. There, proof functions as the last judgment, the
final word before a problem is put to bed. But the essential mathematical activity
is finding the proof, not checking after the fact that indeed it is a proof.

How does formal proof differ from real live proof?

Real-life proof is informal, in whole or in part. A piece of formal argument—
a calculation —is meaningful only to complete or verify some informal reason-
ing. The formal-logic picture of proof is a topic for study in logic rather than a
truthful picture of real-life mathematics.

Formal proof exists only in a formalized theory, cleaned and purged of all
associations and connotations. It uses a formal vocabulary, formal axioms, and
formal inference rules.

The passage from informal to formalized theory must entail loss of meaning .
or change of meaning. The informal has connotations and alternative interpreta-
tions not in the formalized theory. Consequently, anything proved formally can
be challenged: “How faithful are this statement and proof to the informal con-
cept we’re actually interested in?”

For some investigations, formalization and complete formal proof would take
time and persistence beyond human capability, beyond any foreseeable computer.

Mathematicians say that any “Theorem and Proof” in a pure mathematics

" journal must be formalizable in principle. A glance into any mathematical

Avchive or Bulletin or Journale or Zeitschrift shows a great proportion of the text
in natural language. Even pages of solid calculation turn out, on inspection, not
to be formalized. In presenting calculations for publication, we include steps
that we consider nonroutine, which should be explained to fellow specialists.
And in every calculation there are routine steps that needn’t be explained to fel-
low experts. These, naturally, we leave out. (If we include them, the editor
throws them out.)
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So the published proof is incomplete. The reader accepts the result on faith,

or fills in the steps herself.
Even in a graduate math class proof isn’t completely formalized. The profes-
sor leaves out as a matter of course what she considers routine or trivial. A non-

- routine step may be assigned as homework.

Practically none of the mathematical literature is formalized (except for com-
puter programs, which are another story.) Yet these far-from-formalized proofs
are accepted by mathematicians as “formalizable in principle.”

Why are they accepted? Because they’re convincing to the experts, who’d be
only too happy to find a serious error or gap.

We accept incomplete, natural-language proofs on the basis of our experi-

ence, our know-how in looking for the weakest link. And also on the author’s

reputation. A known bungler, or just an unknown, or an authority of proved
accomplishment?

Peano hoped that his formal language would guarantee proofs to be correct.
In today’s language, that proofs could be checked by computer. But trying to
check proofs by computer may introduce new errors. There is random error by
physical fluctuations of the machine, and there is human error in dcs1gmng and
producing hardware and software (logic and programming.) For most nontrivial
mathematics, the vision of formal proof is still visionary. And when a machine
does part of a proof, as in the four-color theorem of Appel and Haken, some
mathematicians reject it because the details of machine computation are
inevitably hidden. More than whether a conjecture is correct, we ask why it is cor-
rect. We want to understand the proof, not just be told it exists.

The issue of machine error is more than just electrical engineering. It’s the
difference between computation in principle (infallible) and computation in
practice (fallible). A simple calculation shows that no matter how small the
chance of error in one step, if the calculation or formal proof is long enough, it’s
almost sure to contain errors. But we can have other grounds for believing the

conclusion of a proof, apart from the claimed certainty of step-by-step reason--

ing. Examples and special cases, analogy with other results, expected symmetry,
unexpected elegance, even an inexplicable feeling of rightness. These illogical
logics may say, “It’s true!” If you have something you hope is a proof, such non-
rigorous reasons can make you sure of the conclusion, even while you know the

“proof ™ is sure to contain uncorrected errors. Such intuition is fallible in princi-
ple. Attempted rigorous proof is fallible in practice.

Beyond the certainty of error in long calculations, you face the fact that calcu-
lation is finite, mathematics infinite. There’s a limit to the biggest computer,
how tightly it can be packed, how fast it can run, how long it will operate. The
life of the human race is a limit. Put these limits together, and you have a bound
on how much anyone will ever compute. If you can’t know anything in mathe-
matics except by formal proof (a particular kind of computation), you’ve set a
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bound on how much mathematics you’ll ever know. The physical bound on
computation implies a bound on the number and length of theorems that will
ever be proved. The only way out would be a faster, less certain way to mathe-
matical knowledge (Knuth, 1976).

Meyer (1974, p. 481) quotes a theorem, proved with L. J. Stockmeyer: “If
we choose sentences of length 616 in the decidability theory of WSIS (weak
monadic second-order theory of the successor function on the nonnegative inte-
gers) and code these sentences into 6 X 616 = 3,696 binary digits, then any
logical network with 3,696 inputs which decides truth of these sentences con-
tains 10122 operations.” (WSIS is much weaker than ordinary arithmetic. The
conclusion applies a fortiori to sentences longer than 616 digits.)

“We remind the reader,” Meyer writes, “that the radius of a proton is approx-
imately 1012 cm., and the radius of the known universe is approximately 1028
cm. Thus for sentences of length 616, a network whose atomic operations were
performed by transistors the size of a proton connected by infinitely thin wires
would densely fill the entire universe.” No decision procedure for sentences of
length 616 in WSIS can be physically realized. Yet WSIS is “decidable”: One says
that a decision procedure “exists” for sentences of any length.

Our notion of rigorous proof isn’t carved in granite. We’ll modify it. We’ll
allow machine computation, numerical evidence, probabilistic algorithms, if we
find them ad\}antagcous. We mislead our pupils if we make “rigorous proof” a
shibboleth in class.

In Class

The role of proof in class isn’t the same as in research. In research, it’s to con-
vince. In class, students are all too easily convinced! Two special cases do it. In a
first course in abstract algebra, proof of the fundamental theorem of algebra is
often omitted. Students believe it anyway.

The student needs proof to explain, to give insight why a theorem’s true. Not
proof in the sense of formal logic. As the graduate student said to the Ideal
Mathematician in The Mathematical Experience, she never saw such a proof in

" class. In class informal or semiformal proofs are presented in natural language.

They include calculations, which are formal subproofs inside the overall informal
proof.

Some instructors think, “If it’s a math class, you prove. If you don’t prove
anything, it isn’t math.” That makes a kind of sense. If proof is math and math is

- proof, then in math class you’re duty bound to prove. The more you prove, the

more horest and rigorous you feel your class is.

Exposure to proof can be more emotional than intellectual. If the instructor
gives no better reason for proof than “That’s math!,” the student knows she saw
a proof, but not wherefore, except: “That’s math!”
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I call this view “absolutist,” despite that word’s unfortunate associations
(absolute monarchy, absolute zero, etc.). If mathematics is a system of absolute
truths, independent of human construction or knowledge— then mathematical
proofs are external and eternal. They’re to admire. The absolutist teacher wants
to tell only what he intends to prove (or order the students to prove). He’ll usu-
ally try for the shortest proof or the most general one. The main purpose of
proof isn’t explanation. The purpose is certification: admission into the catalog
of absolute truths.

. The view I favor is humanism. To the humanist, mathematics is o##s—our
tool, our plaything.

Proof is complete explanation. Give it when complete explanation is appro-
priate, rather than incomplete explanation or no explanation.

The humanist math teacher looks for enlightening proofs, not necessarily the
most general or the shortest. Some proofs don’t explain much. They’re called
“tricky,” “pulling a rabbit out of a hat.” Give that kind of proof when you want
your students to see a rabbit pulled out of a hat. But in general, give proofs that
explain. And if the only proof you can find is unmotivated and tricky, if your stu-
dents won’t learn much from it, must you do it “to stay honest”? That “hon-
esty” is a figment, a self-imposed burden. Better try to be clear, well-motivated,
even inspiring.

This attitude disturbs people who think proof is the be-all and end-all of
mathematics—who say “a mathematician is someone who proves theorems”
and “without proof, there’s no mathematics.” From that viewpoint, a mathe-
matics in which proofis less than absolute is heresy.

For the humanist, the purpose of proof, as of all teaching, is understanding.
Whether to give a proof as is, elaborate it, or abbreviate it, depends on what he
thinks will intrease the student’s understanding of concepts, methods, and
applications. ' :

This policy uses the notion of “understanding,” which isn’t precise or likely
to be made precise. Do we understand what it means “to understand”? No. Can
we teach to foster understanding? Yes. We recognize understanding, though we
can’t say precisely what it is.

. In a stimulating article, Uri Leron (1983) borrowed an idea from comput-
ing—“structured proof.” A structured proof is like a structured program.

Instead of starting with little lemmas whose significance appears at the end, start -

by breaking the proof-task into chunks. Then break each chunk into subchunks.
The litde lemmas come at the end, where you see why you need them.

In the general classroom, the motto is: “Proof is a tool in service of teacher
and class, not a shackle to restrain them.”

In teaching future mathematicians, “Proof’is a tool in service of research, not
a shackle on the mathematician’s imagination.”
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Proof can convince, and it can explain. In reseavch, convincing is primary. In
high-school or undevgraduate class, explaining is primary.

k3

Intuition

If we look at mathematical practice, the intuitive is everywhere. We consider
intuition in the mathematical literature and in mathematical discovery.

A famous example was the letter from Ramanujan to Hardy, containing
astonishing formulas for infinite sums, products, fractions, and roots. The letter
had gone to Baker and to Hobson. They ignored it. Hardy didn’t ignore it.

Ramanujan’s formulas prove there is mathematical intuition, for they’re cor-
rect, even though Ramanujan didn’t prove them, and in some cases had hardly
an idea what a proof would be. But what about Hardy? He also made a correct
judgment without proof—the judgment that Ramanujan’s formulas were true,
and that Ramanujan was a genius. How did he do that? Not by checking his for-
mulas with complete proofs. By some mental faculty associated with mathemat-
ics, Hardy made a sound judgment of Ramanujan’s formulas, without proofs.
Was Hardy’s judgment of Ramanujan’s letter a mathematical judgment? Of
course it was, in any reasonable understanding of the word mathematics. It was
an exceptional event, yet not essentially different from mathematical judgments
made every day by reviewers and referees, by teachers and paper-graders, by
search committees and admission committees. The faculty called on in these
judgments is mathematical intuition. It’s reliable mathematical belief without
the slightest dream of being formalized. :

Since intuition is-an essential part of mathematics, no adequate philosophy of
mathematics can ignore intuition.. ‘ .

The word intuition, as mathematicians use it, carries a heavy load of mystery
and ambiguity. Sometimes it’s a dangerous, illegitimate substitute for rigorous
proof. Sometimes it’s a flash of insight that tells the happy few what others learn
with great effort. As a first step to explore this slippery concept, consider this list
of the meanings and uses we give this word.

1. Intuitive is the opposite of rigorous. This usage is not completely clear, for

the meaning of “rigorous” is never given precisely. We might say that in this

usage intuitive means lacking in rigor, yet the concept of rigor is defined intu-

- itively, not rigorously.

2. Intuitive means visual. Intuitive topology or geometry differs from rigor-

. ous topology or geometry in two ways. On one hand, the intuitive version has a

meaning, a referent in the domain of visualized curves and surfaces, which is
absent from the rigorous formal or abstract version. In this the intuitive is supe-
rior; it has a valuable quality the rigorous version lacks. On the other hand, visu-
alization may mislead us to think obvious or self-evident statements that are
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dubious or false. The article by Hahn, “The Crises in Intuition” is a beautiful
collection of such statements.

3. Intuitive means plausible, or convincing in the absence of proof. A related
meaning is, “what you might expect to be true in this kind of situation, on the
basis of experience with similar situations.” “Intuitively plausible” means reason-
able as a conjecture, i.e., as a candidate for proof.

4. Intuitive means incomplete. If you take a limit under the integral sign
without using Lebesgue’s theorem, if you expand a function in a power series
without checking that it’s analytic, you acknowledge the logical gap by calling
the argument intuitive.

5. Intuitive means based on a physical model or on some special examples.
This is close to “heuristic.”

6. Intuitive means holistic or integrative as opposed to detailed or analytic.
When we think of a theory in the large, when we’re sure of something because it
fits everything else we know, we’re thinking intuitively. Rigor requires a chain of
reasoning where the first step is known and the last step is the conjecture. If the
chain is very long, rigorous proof may leave doubt and misgiving. It may actually
be less convincing than an intuitive argument that you grasp as a whole, which
uses your faith that mathematics is coherent.

In all these usages intuition is vague. It changes from one usage to another.
One author takes pride in avoiding the “merely” intuitive—the use of figures
and diagrams as aids to proof. Another takes pride in emphasizing the intu-
itive—showing visual and physical significance of a theory, or giving heuristic
derivations, not just formal post hoc verification. ‘

With any of these interpretations, the intuitive is to some degree extraneous. It
has desirable and undesirable aspects. It’s optional, like seasoning on a salad. It’s
possible to teach mathematics or to write papers without thinking about intuition.

However, if you’re not doing mathematics, but watching people do mathe-
matics and trying to understand what they’re doing, dealing with intuition
becomes unavoidable.

I maintain that:

1. All the standard philosophical viewpoints rely on some notion of intuition.

2. None of them explain the nature of the intuition that they postulate.

3. Consideration of intuition as actually experienced leads to a notion that is dif-
ficult and complex, but not inexplicable. _

4. A realistic analysis of mathematical intuition should be a central goal of the
philosophy of mathematics.

Let’s elaborate these points. By the main philosophies, I mean as usual con-
structivism, Platonism, and formalism. For the present we don’t need refined
distinctions among versions of the three. It’s sufficient to characterize each
crudely with one sentence.
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The constructivist regards the natural numbers as the fundamental datum of
mathematics, which neither requires nor is capable of reduction to a more basic
notion, and from which all meaningful mathematics must be constructed.

The Platonist regards mathematical objects as already existing, once and for

all, in some ideal and timeless (or tenseless) sense. We don’t create, we discover

what’s already there, including infinites of a complexity yet to be conceived by
mind of mathematician. :

The formalist rejects both the restrictions of the constructivist and the theol-
ogy of the Platonist. All that matters are inference rules by which he transforms
one formula to another. Any meaning such formulas have is nonmathematical
and beside the point.

What does each of these three philosophies need from the intuition? The
most obvious difficulty is that besetting the Platonist. If mathematical objects
constitute an ideal nonmaterial world, how does the human mind /brain estab-
lish contact with this world? Consider the continuum hypothesis. Gédel and
Cohen proved that it can neither be proved nor disproved from the set axioms of
contemporary mathematics. The Platonist believes this is a sign of ignorance.
The continuum is a definite thing, independent of the human mind. It either
does or doesn’t contain an infinite subset cquivalent neither to the set of inte-
gers, nor to the set of real numbers. Our éntuition must be developed to tell us
which is the case. The Platonist needs intuition to connect human awareness and
mathematical reality. But his intuition is elusive. He doesn’t describe it, let alone
analyze it. How is it acquired? It varies from person to person, from one mathe-
matical genius to another mathematical genius. It has to be developed and -
refined. By whom, by what criteria, does one develop it? Does it directly perceive

“an ideal reality, as our eyes perceive visible reality? Then intuition would be a sec-

ond ideal entity, the subjective counterpart of Platonic mathematical reality. We
have traded one mystery for two: first, the mysterious relation between timeless,

- immaterial ideas and the mundane reality of change and flux; and second, the

mysterious relation between the flesh and blood mathematician and his intu-
ition, which directly perceives the timeless and eternal. These difficulties make
Platonism hard for a scientifically oriented person to defend.

Mathematical Platonists simply disregard them. For them, intuition is some-
thing unanalyzable but indispensable. Like the soul in modern Protestantism,
the intuition is there but no questions can be asked about it.

The constructivist, as a conscious descendant of Kant, knows he relies on
intuition. The natural numbers are given intuitively. This doesn’t seem problem-
atical. Yet Brouwer’s followers have'disagrced on how to be a constructivist. Of
course, every philosophical school has that experience. But it creates a difficulty
for a school that claims to base itsélf on a universal intuition.

The dogma that the intuition of the natural numbers is universal violates his-
torical, pedagogical, and anthropological experience. The natural number system
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seems an innate intuition to mathematicians so sophisticated they can’t remem-
ber or imagine before they acquired it; and so isolated they never meet people
who haven’t internalized arithmetic and made it intuijtive (the majority of the
human race!).

What about the formalist? Does intuition vanish along with meaning and
truth? You can avoid intuition as long as you consider mathematics to be no
more than formal deductions from formal axioms. A. Lichnerowicz wrote, “Our
demands on ourselves have become infinitely larger; the demonstrations of our
predecessors no longer satisfy us but the mathematical facts that they discovered
remain and we prove them by methods that are infinitely more rigorous and pre-
cise, methods from which geometric intuition with its character of badly ana-
lyzed evidence has been totally banned.”

Geometry was pronounced dead as an autonomous subject; it was no more
than the study of certain particular algebraic-topological structures. The formal-
ist eliminates intuition by concentrating on refinement of proof and dreaming of
an irrefutable final presentation. To the natural question, Why should we be
interested in these superprecise, superreliable theorems?, formalism turns a deaf
ear. Obviously, their interest derives from their meaning. But the all-out formal-
ist throws out meaning as nonmathematical. Then how did our predecessors find
correct theorems by incorrect reasoning? He has no answer but “Intuition.”

Surely Cauchy knew Cauchy’s integral theorem, even though (in the formal-
ist’s sense of knowing the formal set-theoretic definition) he didn’t know the
meaning of any term in the theorem. He didn’t know what is a complex number,
what is an integral, what is a curve; yet he found the complex number represented
by the integral over this curve! How can this be? Cauchy had great intuition.

“But during my last night, the 22-23 of March, 1882 —which I spent sitting
on the sofa because of asthma—at about 3:30 there suddenly arose before me
the Central Theorem, as it has been prefigured by me through the figure of the
14-gon in (Ges. Abh., vol. 3, p. 126). The next afternoon, in the mail-coach
(which then ran from Norden to Emden) I thought through what I had found,
in all its details. Then I knew I had a great theorem. . . . The proof was in fact
very difficult. T never doubted that the method of proof was correct, but every-
where I ran into gaps in my knowledge of function theory or in function theory
itself. I could only postulate the resolution of these difficulties, which were in
fact completely resolved only 30 years later (in 1921) by Koebe” (E. Klein).

But what s this intuition? The Platonist believes in real objects (ideal, to be
sure), which we “intuit.” The formalist believes no such things exist. So what is
there to intuit? The only answer is, unconscious formalizing. Cauchy subcon-
sciously knew a correct proof of his theorem, which means knowing the correct
definitions of all the terms in the theorem.

This answer is interesting to the many mathematicians who’ve made correct

conjectures they couldn’t prove. If their intuitive conjecture was the result of
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unconscious reasoning, then: (a) Either the unconscious has a secret method of
reasoning that is better than any known method; or (b) the proof is there in my
head, I just can’t get it out!

Formalists willing to consider the problem of discovery and the historical

" development of mathematics need intuition to account for the gap between their

account of mathematics (a game played by the rules) and the real experience of
mathematics, where more is sometimes accomplished by breaking rulcs than
obeying them.

Accounting for intuitive “knowledge” in mathematics is the basic problem of
mathematical epistemology. What do we believe, and why do we believe it? To
answer this question we ask another question: what do we teach, and how do we
teach it? Or what do we try to teach, and how do we find it necessary to teach it?
We try to teach mathematical concepts, not formally (memorizing definitions)
but intuitively— by examples, problems, developing an ability to think, which is
the expression of having successfully internalized something. What? An intuitive
mathematical idea. The fundamental intuition of the natural numbers is a shared
concept, an idea held in common after manipulating coins, bricks, buttons, peb-
bles. We can tell by the student’s answers to our questions that he gets the idea
of a huge bin of buttons that never runs out.

Intuition isn’t direct perception of something external. It’s the effect in the
mind/brain of manipulating concrete objects—at a later stage, of making marks
on paper, and still later, manipulating mental images. This experience leaves a
trace, an effect, in the mind/brain. That trace of manipulative experience is your
representation of the natural numbers. Your representation is equivalent to mine .
in the sense that we both give the same answer to any question you ask. Or if we
get different answers, we compare notes and figure out who’s right. We can do
this, not because we have been explicitly taught a set of algebraic rules, but
because our mental pictures match. If they don’t, since I’m the teacher and my

~ mental picture matches the one all the other teachers have, you get a bad mark.

We have intuition because we have mental representations of mathematical
objects. We acquire these representations, not mainly by memorizing formulas,
but by repeated experiences (on the elementary level, experience of manipulat-
ing physical objects; on the advanced level, experiences of doing problems and
discovering things for ourselves). These mental representations are checked for
veracity by our teachers and fellow students. If we don’t get the right answer, we
flunk the course. Different people’s representations are always being rubbed
against each other to make sure they’re congruent. We don’t know how these
representations are held in the mind/brain. We don’t know how azy thought or
knowledge is held in the mind/brain. The point is that as shared concepts, as
mutually congruent mental representations, they’re real objects whose existence
is just as “objective” as mother love and race prejudice, as the price of tea or the
fear of God. '
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How do we distinguish mathematics from other humanistic studies? There’s a
fundamental difference between mathematics and literary criticism. While math-
ematics is a humanistic study with respect to its subject matter—human ideas—
it’s science-like in its objectivity. Those results about the physical world that are
reproducible —which come out the same way every time you ask—are called
scientific. Those subjects that have reproducible results are called natural sci-
ences. In the realm of ideas, of mental objects, those ideas whose properties are
reproducible are called mathematical objects, and the study of mental objects with
veproducible propevties is called mathematics. Intuition is the faculty by which we
consider or examine these internal, mental objects.

There’s always some discrepancy between my intuition and yours. Mutual
adjustment to keep agreement is going on all the time. As new questions are

asked, new parts of the structure come into sight. Sometimes a question has no
~ answer. The continuum hypothesis doesn’t have to be true or false.

We know that with physical objects we may ask questions that are inappropri-
ate, which have no answer. What are the exact velocity and position of an elec-
tron? How many trees are there growing at this moment in Minnesota? For
mental objects as for physical ones, what seems at first an appropriate question is
sometimes discovered, perhaps with great difficulty, to be inappropriate. This
doesn’t contradict the existence of the particular mental or physical object.
There are questions that a7¢ appropriate, to which reliable answers can be given.

The difficulty in seeing what intuition is arises because of the expectation that
mathematics is infallible. Both formalism and Platonism want a superhuman
mathematics. To get it, each of them falsifies the nature of mathematics in
human life and in history, creating needless confusion and mystery.

Certainty

Even if it’s granted that the need for certainty is inherited from the ancient past,
and is religiously motivated, its validity is independent of its history and its moti-
vation. The question remains: is mathematical knowledge indubitable?
Set aside history and motivation. Look at samples of mathematical knowledge
and ask: Is this indubitable?
.We take three examples. First, good old

S 24 2=4x%

Second, familiar to all former high-school students,

“The angle sum of any triangle equals two right angles.” Finally, a more
sophisticated example: a convergent infinite series.
- Label the first example

Formula A: 2 +2 = 4.
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Everyone knows Formula A is a mathematical truth. Everyone knows it’s
indubitable. Ezgo, at least one mathematical truth is indubitable.
There’s Russell’s cavil: indubitable, but no great truth.

2 + 2 by definition means (1 + 1) + (1 + 1)
4 by definition means 1 + (1 + (1 + 1))

By the associative law of addition, Formula A then is:
1+1+1+1=1+1+1+1.

Indubitable but unimpressive! As Frege said, it is an analytic a priori truth, not a
synthetic one. (See Chapters 7 and 8 about Kant and Frege.)

Bertrand Russell thought every mathematical truth is a tautology like 2 + 2 = 4
—trivially indubitable. He said that a mathematical theorem says no more than
“the great truth that there are three feet in a yard.” This view is regarded by
mathematicians as absurd and without merit.

To probe into Formula A, we must ask, what is 2? What is 4? What is +?
What is =? Trivial as these questions may seem, they serve to distinguish the dif-
ferent schools (logicist, formalist, intuitionist, empiricist, conventionalist).

The most elementary-answer is the empiricist one. “2 + 2 = 4” means “Put two
buttons in a jar, put in two more, and you have four buttons in the jar.” John Stuart
Mill is the classic advocate of this interpretation. For him, formula A is #ot indu-
bitable. It’s about buttons. Buttons are material objects, which never can be known
with certainty (Heraclitus et al., as expounded, for instance, in Russell’s History of
Western Plilosophy, 1945). Who knows if some exotic chemical reaction might give

two buttons + two buttons = zero buttons
or
two buttons + two buttons = five buttons.

For indubitability, forget buttons.”

Another answer, along formalist or logicist lines, might be given by a gradu-
ate student of mathematics. “1, +, = are symbols defined by the Dedekind-
Peano axioms.**

“2isshortfor1 + 1,

“3 isshortfor 2 + 1,

“4 is short for 3 + 1. )
“Now Formula A can be proved.”

(Our reduction above of Formula A to
1+1+1+1=1+1+1+1

is a sketch of the formal prbof in the Mathematical Notes and Comments.)
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So then is Formula A doubtable?

Before I worry about doubtability, how sure am I that the proof is even cor-
rect? It seems to me that it is correct. Could I be mistaken? Overlooked some-
thing staring me in the face? I make mistakes in math. I think I’m sure the proof
is O.K., but am I 7eally sure that I’m zotally certain?

A second worry is more substantial. How do I know Peano’s axioms produce
the same number system 1,2,3, . . . that I had in mind (or Dedekind had in
mind) in the first place? They seem to work. How certain can I be that they’ll
always work? The numbers 1,2. . . . with which we start (before anybody gives us
aﬁdoms) are an informal, “intuitively given “ system. For that reason, it’s impos-
sible to prove formally that they correspond to any formal model. Such a proofis
possible only between two formal models. Does the formal model correspond to
the original intuitive idea? That question can never by answered by a rigorous,
formal proof! It must rest on informal, intuitive reasoning that has no claim to
be rigorous, let alone indubitable.

I have no doubt that Peano’s axioms actually do describe the intuitive natural
numbers 1,2,. ... ButI can’t claim this belief as indubitable. Consider my
knowledge that I’m now writing on a yellow pad with a blue pen sitting at a
round table, and so forth. I can barely conceive that this might be false. But by
the standards of Heraclitus, Plato, and others, such knowledge is doubtable or
dubitable. If so, I can more readily believe Peano’s seemingly convincing axioms
might be doubtable. If they are, then every theéorem in Peano arithmetic is
doubtable. Even Formula A,

2+2=41U

Another often-cited distinction between sensory knowledge and mathemati-
cal knowledge is that sensory knowledge conid conceivably be other than it is. It’s
conceivable that my blue pen is really yellow and my yellow pad really blue.

Mathematical knowledge, on the other hand, such as Formula A, is supposed
to be not only indubitably true, it’s supposed to be inconceivable that it could be
false. We supposedly can’t imagine

2+2=3

as we supposedly can imagine a blue pad that looks yellow. This observation has
been held to demonstrate that Formula A is indubitable.

But whether the denial of Formula A is inconceivable can’t be judged until
the import and significance of Formula A is explicated. It has one meaning as a
veport of & property of buttoms, coins, or other such discrete objects. It has a sec-
ond meaning as a theorem in an axiom system with +, =, and 1 as undefined
terms. But we’ve just seen that as a formula about buttons, Formula A is
doubtable. And as a theorem in an abstract axiom system, it’s doubtable still.
Whether in terms of buttons or of Peano arithmetic, Formula A is doubtable. Its
negation is conceivable.
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Let’s consider the angle-sum theorem in Euclidean plane geometry.** It was
Baruch Spinoza’s favorite example of an absolutely certain statement. We’ll fol-
low proper terminology and call it

Formula B: Angle A + Angle B + Angle C = 2 right angles.

The angles A, B, and C on the left side of the equation are the internal angles of
a triangle, any triangle at all.

Trite as this example seems to us today, it was already the twentieth century
when Gottlob Frege berated David Hilbert for not understanding that there can
be only one real, true geometry (Euclid’s, of course).

We have theorem and proof. They have withstood scrutiny for 2,000 years.
Isn’t this indubitable?

Consider what is meant by the term “angle.” Some say the theorem tells what
will happen if you find a triangle lying somewhere and measure its angles. The
sum should be 180 degrees.

If you actually do it, you find the sum not exactly 180 degrees. You retreat. It
would be 180 degrees if you could draw perfect straight lines and measure per-
fectly. But you can’t. You claim only that the sum will be close to 180 degrees,
and even closer if you remeasure more accurately. That’s zoz what Euclid said.
It’s a modern reinterpretation based on our post-Newtonian idea of “limit” or
“approximation.” Euclid’s theorem is about the angles themselves, not about
measurements or approximations.

A more sophisticated interpretation says Euclid’s talking about ideal triangles,
not triangles you actually draw or measure—an idealization that our mind /brain
creates or discovers after seeing lots of real triangles. The indubitability of the
theorem flows from the indubitability of the argument and the indubitability of -
the axioms with respect to the ideal points and lines.

The most important of the axioms about lines is the parallel postulate,
“Buclid’s Fifth.” It can be stated in many equivalent forms. Most popular is

"Playfair’s: “Through any given point, parallel to any given line, can be drawn

exactly one line.” For thousands of years the fifth axiom was accepted as intu-
itively obvious. Using it, we obtain Euclidean geometry, including the “indu-
bitable” theorem about the angle sum of a triangle. But it was too complicated
for an axiom, some thought. It ought to be a theorem.

In the nineteenth century Carl Friedrich Gauss, Janos Bolyai, a Hungarian
army officer, and Nicolai Ivanovich Lobachevsky, professor and later rector at

- the University of Kazan, all without knowing of each other’s work, had the same

idea: Suppose the fifth postulate is filsz, and see what happens. Others had made
the same supposition, in search of a contradiction that would prove the fifth pos-
tulate. Gauss, Bolyai and Lobatchevsky recognized that they got, not a contra-
diction, but a new geometry!

There is more information about non-Euclidean geometry in the article
about Kant and in the mathematical-notes and comments. Here we see how this
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discovery affects the certitude of the angle sum theorem. Suppose we replace
Euclid’s fifth by the non-Euclidean “anti-Playfair” postulate: “Through any
point there pass more than one line parallel to any given line.” From this strange
axiom it follows that the angle sum of any triangle is Jess than 180 degrees. And if
we try a different non-Euclidean fifth postulate—assume there are #o parallel
lines—then the angle sums of triangles are greazer than 180 degrees.

We can’t claim the angle-sum theorem is indubitable unless Euclid’s paral-
lel postulate is indubitable, for if we alter that postulate, the angle sum theo-
rem is falsified. It’s tempting just to declare that obviously or intuitively
Euclid is correct. This wasn’t believed by Gauss. There’s a story that he tried
to settle the question by measuring angles of a triangle whose vertices were
three mountain tops. The larger the triangle, the likelier would be a measur-
able deviation from Euclideanness. According to the legend, the measure-
ment was indecisive.

Some hundred years later, Einstein’s general relativity depended on Rie-
mannian geometry, a far-reaching generalization of non-Euclidean geometry.
In relativity texts non-Euclidean geometry represents relativistic velocity vec-
tors. So physics gives no license to favor Euclid over non-Euclid. Our prescien-
tific, intuitive notions of space are learned on a small scale, relative to the
universe at large. Locally, “in the small,” Euclidean and non-Euclidean geome-
tries are indistinguishable. Local intuition can’t tell which is true in the large.
Belief in the Euclidean angle sum theorem as indubitable was based on belief in
an infallible spatial intuition. That belief has been refuted by non-Euclidean
geometry and the following development of Riemannian geometry with its
application in relativity.

Then where are we? Surely the angle-sum theorem is true in some sense? Of
course. It’s true as a theorem in Euclidean geometry. It follows from the
axioms—not from Euclid’s axioms alone, however. They need correction and
completion. Hilbert took care of that, so we finally have a correct proof of the
angle sum theorem, from a corrected and completed Euclidean axiom set.

We’re in the same position as in the interpretation of

2+2=4

by Peano’s axioms. We can’t be completely sure which axioms describe the trian-
gle we had in mind. By the nature of the case, such a thing can’t be proved.
Geometry is worse off than arithmetic, for its axioms are more subtle and elabo-
rate. No one says Hilbert’s axioms for Euclidean plane geometry are self-evident
or indubitable.

Formula C is our last:

L+ A+ L1 1y
4 9 16 25 6

Intuition/Proof/Certainty 11

This formula was first written down by Euler. On the left is an infinite series. It
says, “Add all terms of the form 1/n%, where n is any positive whole number.” It
asserts that the result of such an addition is the same as if you take & (the ratio of
the circumference of a circle to its radius), square it, and then divide by 6.

The novice should be staggered. How can he ever add infinitely many num-
bers? And why would the answer have anything to do with a circle? The proof is
easy when you know how to expand functions in series of sines and cosines
(Fourier series).**

Formula C is abstruse and remote compared to Formulas A an B. You check

2+2=4

on your fingers. You check the angle sum theorem by measuring angles. What
can you do here? Well, if you have a computer, or a calculator plus patience, you
add up the series—as much as you have patience for. Then press the 7 button on
your calculator, square and divide by 6.

A reader in Johannesburg sent these numbers (found after 30 hours on a
hand calculator): '

1
E — = 1.644914943
: n
2

% = 1.644934067 -
What should you conclude from this?

. If you’re an optimist, and the error after 30 hours of calculation is only
0.000019124, you expect it would be even less after 40 hours. The formula is
probably right. This is hope, not certainty.

No amount of addition could yield certainty, because the formula is about the

limir—infinitely many termstAny computation is finite.

If you want indubitable truth for this formula, you need proof. Fortunately,
from the calculation of Euler or Fourier, which yields Formula C, it takes only a
few more steps to such a proof.

The proof relies on the real number system. That has served long and well,
but Gédel told us we can’t prove it’s consistent. Intuitionist and constructivist
mathematicians don’t rely on it without radical trimming. For practical purposes,
we confidently write

1 2

6
At the same time, if the angle-sum theorem and the formula “2 + 2 = 4” are
subject to possible doubt, then this formula, involving limits, irrationals, and
infinites, is more doubtable.



