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group. That presentation is the same as the presentation
of the knot group described in the previous section.

The connection with labeling can also be summarized.
For each arc in the diagram of the knot there is an element
in the fundamental group which is represented by a path
that runs from the base point, p, directly to the arc, once
around the arc, and then back to the basepoint. That
element corresponds to the element in the knot group given
by the variable label on the arc. It can be proved that
relations between the elements in the fundamental group
correspond to the relations in the knot group arising at the
crossings.

A group is often studied by mapping it homomorphi-
cally onto a simpler group, say G, which is better under-
stood. Given such a homomorphism of the fundamental
group of a knot complement, composing it with the cor-
respondence between the knot group and the fundamental
group gives an assignment of an element in G to each arc
in the diagram. That is, labelings of the diagram turn
out to correspond to homomorphisms of the fundamental

group of the knot complement. The consistency condition

on the labeling corresponds to the map being a homomor-
phism. The generation condition corresponds to the map
being surjective.

CHAPTER 6:
GEOMETRY, ALGEBRA, AND
THE ALEXANDER POLYNOMIAL

The discovery of connections between the various tech-
niques of knot theory is one of the recurring themes in this
subject. These relationships can be surprising, and have
led to many new insights and developments. A recent ex-
ample of this occurred with the discovery by V. Jones of a
new polynomial invariant of knots . Although his approach
was algebraic, the Jones polynomial was soon reinterpreted
combinatorially. Almost immediately there blossomed an
array of new combinatorial knot invariants which appear
to be among the most useful tools available for problems
relating to the classification of knots. An understanding
of these new invariants from a noncombinatorial perspec-
tive is now a major problem in the subject, and one that
will certainly lead to significant progress. Chapter 10 is
devoted to a discussion of the Jones polynomial and its
generalizations.

To demonstrate how various techniques can be re-
lated, this chapter presents geometric and algebraic ap-
proaches to the Alexander polynomial. The geometric ap-
proach introduces a new and powerful object, the Seifert
matriz, and for this reason geometry will be the main fo-
cus here. The algebraic approach links the combinatorics
to the geometry, and also demonstrates that the Alexander
polynomial of a knot is determined by the knot group.
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It is not surprising that bringing together the diverse
methods developed so far involves difficult technical argu-
ments. Even the definition of the Seifert matrix, given in
Section 1, is fairly complicated. The benefit of this tech-
nical argument is seen in Section 2, where a simple algo-
rithm for computing the Alexander matrix is given, and in
Section 3, where new knot invariants are developed. Fox
derivatives and their use in computing the Alexander poly-
nomial from a presentation of the knot group are described
in Section 4. This material may also appear quite techni-
cal; but again there are valuable insights gained from the
approach.

1 The Seifert Matrix If a surface is formed by
adding bands to a disk, the
cores of the bands along with arcs on the disk can be used
to construct a family of oriented curves on the surface.
This is illustrated in Figure 6.1. The choice of orientation
of the curves is arbitrary. In the case where the surface is a
Seifert surface for a knot, how these curves twist and link
carries information about the knot. This linking and twist-
ing information is captured by a matrix called the Seifert
matriz of the knot.

In Exercise 2.5 of Chapter 3, linking numbers were
defined. Exercise 2.6 of that chapter provided an alterna-
tive definition that is now summarized. Suppose that an
oriented link of two components, K and J, has a regular
projection. The linking number of K and J is defined to be
the sum of the signs of the crossing points in the diagram
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at which K crosses over J. The sign of a crossing is 1 if
the crossing is right-handed, that is, if J crosses under K
from the right to the left. The sign is —1 if the crossing is
left-handed. The linking number is denoted ¢k(K,J) and
is symmetric: ¢k(K,J) = £k(J,K).

e
N

Figure 6.1

Given a knot K, fix a Seifert surface F' for K. Since
a Seifert surface is orientable, it is possible to distinguish
one side of the surface as the “top” side. Formally this
consists of picking a nonvanishing normal vector to the
surface. Which direction is picked will not matter. With
this done, given any simple oriented curve, z, on the Seifert
surface, one can form the positive push off of x, denoted
z*, which runs parallel to z and lies just above the Seifert
surface.

If the Seifert surface F' is formed from a single disk
by adding bands, it was shown in Figure 6.1 that there
naturally arises a family of curves on F. If F is genus
g there will be 2g curves, x1,%2,...,22,. The associated
Seifert matriz is the 2g X 2g matrix V' with (,j)-entry v, ;
given by v;,; = £k(z;,z}). The Seifert matrix clearly de-
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pends on the choices made in its definition, and by itself is
pot an invariant of the knot. However, in the next two sec-
tions it will be shown that the Seifert matrix can be used
to define knot invariants, including the Alexander polyno-
mial. The rest of this section is devoted to illustrating the
computation of entries in a Seifert matrix.

EXAMPLE
Computing the entries of a
Seifert matrix can be diffi-
/ cult, especially if the surface
is very complicated. Let’s
consider the Seifert matrix
for the Seifert surface and
knot illustrated in Figure 6.1.
The way the surface is ori-
ented, the normal vector to
the surface points toward the
reader on the disk portion of
Figure 6.2 the surface. Figure 6.2 illus-
trates the curves zo and z%. Their linking number is 1, so
that v 3 = 1.
In Figure 6.3 the curves /—‘—- —Q
z, and z3 are drawn. The (
reader should redraw Fig-
ure 6.1 and check that the \-/5)
curve drawn as z3 actually
lies above the Seifert surface. -
It is a delicate construction.
Using Figure 6.3, ome
computes vz,2 = Lk(z2,5) =
—5. Continuing in this way
(see Exercise 1.2) the final re-

sult is that the Seifert matrix Figure 6.3
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is given by
2 1 0 0
0 -5 1 0
0 1 2 -1
0o 0 -2 =2
EXERCISES

.1.1. I.n Fig}lre 6.4 Seifert surfaces for the trefoil knot and
its mirror image, the left-handed trefoil, are illustrated.

Compute the Seifert matrix associated to each of these
surfaces.

Figure 6.4

1.2. Complete the calculation of the Seifert matrix for the
knot in Figure 6.1.

1.3. .Figure 6.5 illustrates the Seifert surface of a knot
previously discussed in Exercise 2.2 of Chapter 3. (This7

particular example is the 3-twisted double of the unknot.)
Compute its Seifert matrix.

1.4. In Exercise 2.5 of Chapter 4 Seifert surfaces for the
(p,q,r)—pretzel knot were constructed, for p, ¢, and r odd.
Find the corresponding Seifert matrix.
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) e

Figure 6.5 Figure 6.6

1.5. Figure 6.6 above shows a Seifert surface for the (2,n)-
torus knot. (Only the (2,5)-torus knot is shown, but the
pattern is clear.) Find the corresponding Seifert matrix.

1.6. What would be the effect of changing the orientation
of the Seifert surface on the Seifert matrix?

1.7. Seifert surfaces for two knots can be used in order to
form a Seifert surface for the connected sum of the knots.
How are the corresponding Seifert matrices related?

1.8. In Exercise 1, the example of the trefoil and its mirror
image can be generalized. What is the relation between
the Seifert matrix of a knot, found using some given Seifert
surface, and the Seifert matrix for its mirror image, found
using the mirror image of the given Seifert surface?

2 Seifert Matrices The Alexander polynomial is

and the Alexander easily computed using the
Polynomial Seifert matrix; recall, once

again, that the polynomial is

only defined up to multiples of +¢'. An immediate con-
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sequence will be a proof that the Alexander polynomial
is symmetric. A proof of this based on the combinatorial
definition of the Alexander polynomial is not at all evident.

THEOREM 1. LetV be a Seifert matriz for o knot
K, and V? be its transpose. The Alezander polynomial is
given by the determinant, det(V —tV?).

Later in this section it will be indicated why this de-
terminant gives a well-defined knot invariant. The proof
that it is the same as the combinatorially defined Alexan-
der polynomial is a deeper result. The connection is via
algebra: the complement of the knot can be decomposed
using a Seifert surface and that decomposition leads to
information about the structure of the knot group. In Sec-
tion 4 a connection between the group of the knot and the
Alexander polynomial will be presented. Carefully putting
all these connections together yields the desired result.

One important corollary of Theorem 1 is the following.

COROLLARY 2. The Alexander polynomial of a knot
K satisfies A (t) = t¥ Ak (t™1) for some integer i.

Proor

- This is an immediate consequence of the fact that a ma-

trix and its transpose have the same determinant: if
a Seifert matrix V is used to compute the Alexander
polynomial Ag(t) = det(V —tV?) = det((V —tV?)*) =
det(Vi—tV) = det(tV—V?*) = det(¢(V —t"'V?)) =
PIAR (). a

S-EQUIVALENCE OF SEIFERT MATRICES
The construction of the Seifert matrix of a knot depended
on many choices. Two of these are especially critical.
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Band moves: If a Seifert surface is presented as a disk
with bands added, that surface can be deformed by sliding
one of the points at which a band is attached over another
band. The resulting surface is again a disk with bands
added. However, the 2g curves formed from the cores of
the new bands will not be the same as those formed from
the cores of the original bands. The effect of this operation
is to do a simultaneous row and column operation on the
Seifert matrix; that is, for some ¢ and j, a multiple of the -
th row is added to the j-th row, and then the same multiple
of the i-th column is added to the j-th column. A sequence
of these band slides changes the Seifert matrix from V to
MVM? where M is some invertible integer matrix.

Stabilization: Given a Seifert surface for a knot, it
can be modified by adding two new bands, as illustrated
in Figure 6.7 for the Seifert surface of the trefoil. One of
the bands is untwisted and unknotted. The other can be
twisted, or knotted, and can link the other bands.

@i

Figure 6.7

It is clear that the boundary of the new surface is the
same knot as for the original Seifert surface. The effect
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of this operation on the Seifert matrix is to add two new
columns and rows, with entries as indicated.

OHr OO OO

O ¥ X K X ¥

k* kX
0 00
Two integer matrices are called S-equivalent if they
differ by a sequence of operations of the two types de-
scribed: right and left multiplication by an invertible in-
teger matrix and its transpose, and addition or removal of
a pair of rows or columns of the type shown above. These
two matrix operations also include the changes that occur
in a Seifert matrix if the bands are reordered, or reoriented.
A difficult geometric argument shows that for any two
Seifert surfaces for a knot, there is a sequence of stabiliza-
tions that can be applied to each so that the resulting
surfaces can be deformed into each other. A consequence
is the following:

THEOREM 8. Any two Seifert matrices for a knot are
S-equivalent.

COROLLARY 4. IfV; and V5 are Seifert matrices asso-
ciated to the same knot, then the polynomials det(V; — tVy)
and det(Vz —tV3) differ by a multiple of +t*.

ProoF
This is proved by checking the effect of the two basic op-
erations of S-equivalence on the determinant. The first,
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multiplying by M and M?* has no effect on the determi-
nant, since det(M) = 1. The second has the effect of
multiplying the determinant by ¢. O

EXAMPLE

In Section 1 the Seifert matrix of the knot illustrated in
Figure 6.1 was presented. The Alexander Polynomial of
that knot is given by the determinant of the matrix

2-2t 1 0 0
-t =545t 1-t 0
0 1—-t 2-2t -142t
0 0 -2+t —24+2¢

The determinant of this matrix is 64t* — 2723 + 417¢% —
272t +64.

EXERCISES

2.1. Compute the Alexander polynomial of the trefoil knot
using the Seifert matrices found in Exercise 1 of the pre-
vious section.

2.2. Find the Alexander polynomial of the knot discussed
in Exercise 1.3, using the Seifert matrix found there.

2.3. Check the calculation of the determinant that gives
the Alexander polynomial of the knot in Figure 6.1.

2.4. Compute the Alexander polynomial of the (p,q,7)-
pretzel knot, (p, ¢, and 7 odd) by using the Seifert matrix
found in Exercise 1.4. - = -«

2.5. Use the result of Exercise 1.7 to show that the Alexan-
der polynomial of the connected sum of knots is the prod-
uct of their individual Alexander polynomials.

2.6. The Alexander polynomial of a knot can be normal-
ized so that only positive powers of ¢ appear and the con-
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stant term is nonzero. Show that the degree of the result-
ing polynomial is even. Hint: use the symmetry condition,
along with the fact that Ax(1) is odd. (If Ag(1) is even,
so is Ax(—1) and the knot would have a mod 2 labeling.
Now see Exercise 3.5, Chapter 3.)

2.7. Show that if the determinant of a 2g x 2g Seifert ma-
trix is nonzero, then the Alexander polynomial is degree
2g and has nonzero constant term.

3 The Signature of In the last section it was seen

a Knot, and Other that any two Seifert matrices

S-equivalence for a knot are S-equivalent;

Invariants that is, a pair of fairly simple

' operations will transform one

to the other. Because of this many knot invariants can be

defined using the Seifert matrix. This section discusses a
few of them.

DETERMINANT

The determinant of the Seifert matrix can change under
stabilization, and is not an invariant of the knot. However,
if V is the Seifert matrix of a knot, then the determinant of
V + V1 is only changed by a sign if the matrix is stabilized.
This is an easy exercise in determinants, and is given in the
problems below. Multiplying by a matrix of determinant
=+1 can at most change the sign of the determinant as well.
Hence, the absolute value of the determinant of V' +V? is
a well-defined knot invariant.

This is in fact the same as the determinant invariant
defined in Chapter 3. The determinant of V +V? is the
value of the Alexander polynomial evaluated at £ = —1 up
to a sign. The Seifert matrix approach leads to a simple
calculation of the determinant.
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THE SIGNATURE OF A KNOT

Given a symmetric (4 = A?) real matrix, there is a
signature defined. One definition is constructive. By per-
forming a sequence of simultaneous row and column oper-
ations the matrix can be diagonalized. The signature of
the matrix is defined to be the number of positive entries
minus the number of negative entries on the diagonal.

ExXAMPLE

Cousider the symmetric matrix A; below. Multiply the
first row by —1/4 and add it to the second row. Now
perform the same operation using the first column. The
resulting matrix is listed as As.

4 1 0 0

1 -10 2 0
Ai=1g o 4 _3

0 0 -3 -4

4 0 0 0

0 —41/4 2 Of _

1o 2 4 3| =%
0 0 -3 —4

Using the second row and column the nondiagonal
entries of the second row and column can be changed to
0. Finally, working with the third column and Tow reduces
the matrix to diagonal form. The exercises ask you to
check that the final result Is

4 0 0 0
0 —41/4 0 0
0 0 180/41 0
0 0 0 —121/20
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As there are 2 positive entries and 2 negative entries the
signature is 2—2 = 0.

A theorem of algebra, named for James J. Sylvester,
states that if the symmetric matrix B is given by B =
MAM?, where M is invertible, then the signatures of A
and B are equal.

For a Seifert matrix V' of a knot K, the matrix V + V?
is symmetric and its signature is called the signature of K,
denoted o(K).

THEOREM 5. For a knot K, the value of o(K) does
not depend on the choice of Seifert matriz, and is hence a
well-defined knot invariant.

Proor

First, note that if Seifert matrices V and W are related
by W = MVM?, then (W +W?) = M(V + V*)M*. Hence
Sylvester’s theorem implies that the signature of (W + W?)
is the same as that of (V +V?*). All that is left to check
is that stabilization of V' does not change the signature of
(V +V?). Proving this is left to the exercises. |

ExXAMPLE
A Seifert matrix V for the knot in Figure 6.1 was given
in Section 1. For that V, V 4+ V? is the matrix discussed
in the previous example, and hence the signature of that
knot is 0.

Using the Seifert matrix for the trefoil computed in
Exercise 1.1 V + V' is given by

‘. /-2 41
+1 -2

It has signature —2.
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The same calculation for the left-handed trefoil gives
a signature of 2. Hence, the right and left trefoils are
inequivalent knots.

THE SIGNATURE FUNCTION

The signature of a knot can be generalized by using com-
plex numbers. First recall that a complex matrix is called
Hermitian if it equals its conjugate transpose. Any Hermi-
tian matrix can be diagonalized performing a sequence of
row and column operations. The only change from the di-
agonalization of real matrices is that if a row is multiplied
by a complex number, then, when the corresponding col-
umn operation is performed, the column is multiplied by
the conjugate of that number. Once diagonalized, the ma-
trix has real entries, (as it equals its conjugate transpose)
and the signature of the matrix is given by the number
of positive entries minus the number of negative entries.
Again, a theorem of linear algebra states that if a Hermi-
tian matrix A is replaced by MAM™* where M is an invert-
ible complex matrix and M* is its conjugate transpose, the
signature is unchanged. _

Let V be the Seifert matrix for a knot K and let w
be a complex number of modulus 1. Consider the Her-
mitian matrix (1 —w)V + (1 —w™t)V*:. The signature of
this matrix is called the w-signature of K. Checking that
S-equivalent Seifert matrices have the same w-signature is
straightforward; only stabilization remains to be checked.
If one thinks of modulus 1 complex numbers as lying on
the unit circle in the complex plane, this signature defines

a function on the unit circle called the signature function-

of the knot.

Even for 2 x 2 Seifert matrices, the signature function
can be difficult to compute. (See Exercise 3.8.) However,
it can sometimes be used to distinguish knots where other
methods fail. It also has many theoretical applications.
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EXERCISES

3.1. Complete the diagonalization and signature calcula-
tions presented in this section. A

3.2. Compute the signature of the (3,5,—7)-pretzel knot .
3.3. Compute the determinant of the (p,q,r)-pretzel knot.

3.4. For a Seifert matrix V, det(V +V?) # 0. (Why?)
Conclude that the signature of a knot is always even.

3.5. Prove that stabilization does not change the signature
of a matrix.

3.6. Use Exercise 1.7 to show that the signature of a con-
nected sum of knots is the sum of their signatures.

3.7. Prove that the matrix (1 —w)V + (1—w™!)V? has
nonzero determinant for w of modulus 1 unless w is a root
of the Alexander polynomial. Conclude that the signature
function is constant on the circle, except for a finite number
of jump discontinuities. -

3.8. Compute the signature function for the trefoil and the
figure-8 knot.

3.9. Compute the signature of the (2,n)-torus knot using
Exercise 1.5.

4 Knot Groups In Chapter 5 it was shown

and the Alexander how to construct a presenta-
Polynomial tion of a group, starting with

a knot diagram. The presen-

tation consists of a set of n variables, and n — 1 words in
the variables (and their inverses.) In this section an al-
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gorithm will be presented that computes the Alexander
polynomial of the knot starting with a group presentation
of the form arising from the construction given in Chapter
5. The algorithm was discovered by Fox. It is, in fact,
possible to compute the polynomial using any presenta-
tion of the group, but to do this the algorithm has to be
generalized.

That the knot polynomial is determined. by the group
of the knot has certain theoretical implications. For in-
stance, as mentioned in Section 2, the link between the
combinatorial and geometric definition of the Alexander
polynomial is provided by this algebra. On the practical
side, Fox’s algorithm provides one more means of comput-
ing the Alexander polynomial.

Fox DERIVATIVES

There is a procedure for defining the formal partial deriva-
tives of monomials in noncommuting variables. In the
present case these monomials will be the defining words
of the group of a knot. The definition of the derivative
begins with two basic rules, which in turn determine the
derivative in general. Fox proved that these rules yield a
well-defined operation on the set of words. Note that the
derivative of a word will no longer be a single word, but
rather a formal sum of words.

1. (8/8z;)(z;) =1, (8/0z;)(z;) =0, (8/0x)(1) = 0.
2..(8/0z;)(w-2z) = (8/0%:)(w)+w-(8/0x;)(2), where

w and z are words in variables {z;, x;l}

One immediate consequence is that

0
8277;

-1

(wi_l) =%
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This follows from the calculations (8/dz;)(x;-z;!)
(8/0z;)(1) = 0, and, using rule 2, (8/8z;)(z;i-z;') =
14 2;(8/0z:) (zh).

EXAMPLE

The partial derivatives of the equation zyzy lz~ly~! are
computed in the following manner. Write the word as
(z) - (yzy~'z~'y~!) and apply rule 2. To differentiate the
second term, write it as (y)(zy~lz~ly~!) and use rule 2
again. Proceed in this way, factoring out one term at a
time. The final result is that the derivative with respect
to z is 1+xy —zyzy~ 'z~ !. The derivative with respect
to y is ¢ — zyzy~ ! — zyzy~z~ly~l. In the exercises you
are called on to fill in the details of this calculation, and
to compute some more complicated examples.

As a hint of things to come, note the following about
this example. The equation zyzy 'z 'y~ ! is the defin-
ing equation for the group of the trefoil knot. If in the
derivative, 1+ xy — zyzy 1z ™!, the variables are both re-
placed with ¢, then the polynomial 1 — ¢+ ¢2 results. This
is the Alexander polynomial of the trefoil. (Also, if the
substitution is made in z — zyzy~! —ryzy iz 1y, the
polynomial —¢2+¢— 1 results, which is the same as the
first modulo a multiple of +¢¢.)

Using THE Fox CALcuLUS TO COMPUTE

THE ALEXANDER POLYNOMIAL

Here is a new algorithm for computing the Alexander poly-
nomial of a knot. Take any presentation of the group of
the knot found by the procedure outlined in Chapter 5.
The presentation will have one more generator than rela-
tion. Now form the Jacobian matrix consisting of all the
partial derivatives of the equations, and eliminate any one
column of the matrix. Substitute ¢ for all the variables that
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appear. Finally, take the determinant of the matrix that
results. This determinant is the Alexander polynomial.

In Chapter 5 it was shown that the group of the knot
illustrated in Figure 5.8 was generated by z, vy, and z,
subject to the relations:

1 1

™= y:z:"lza:y_lzyz‘ z‘lacy_ :zzy'"lzz:_l =1,

ro = z“1y"1zyxy_1z_1yzya:’1y‘1z_1ya;y—1 =1.

(Recall that any one of the 3 relations is a consequence
of the other 2.) If, in the Jacobian, the column corre-
sponding to 8/8y is eliminated, the resulting matrix is
2x2. As an example, the (1,2) entry is 8/9z(r1) =
yz~ ! —yzlzzylzyzr—'z~1. Substituting ¢ for each vari-
able yields —1+¢. If the other derivatives are computed
and ¢ substituted, the resulting matrix is

(-t +4-2 —t+1
A(t)_( —t+2 1—3t‘1+t‘2)

Taking the determinant yields an Alexander polynomial
—2t2 4+ 10t — 154+ 10t~1 —2t72.

WayY THIS WORKS
The proof that this procedure actually produces the
Alexander polynomial is fairly long and technical. The
basic ideas are easily explained. B

To begin, there is the following central observation.
One presentation of the kiiot group is obtained with no
algebraic manipulations. For each arc there is a gener-
ator and for each crossing there is a relationship. For
instance, at a right-hand crossing there is the relation
z;z;z; 'zt = 1. If the Jacobian matrix for this set of
relationships is computed and then ¢ is substituted for all

the variables, the resulting matrix is just the matrix used
in the combinatorial definition of the polynomial given in
Chapter 3. The algebraic manipulations that reduce the
number of variables in the presentation correspond to oper-
ations on the Jacobian matrix. A careful calculation shows
that none of these changes affect the final determinant.

EXERCISES
4.1. The knot 5; has knot group

(@, y | syzyzy ety ey ).

Compite its Alexander polynomial.

4.2. Find two generator presentations of the groups of the
knots 62, 63, 71, and 7s. In each case use the presentation
to compute the Alexander polynomial.

4.3. Fill in the details of the calculation of the matrix A(t)
in this section.

4.4. If a knot diagram has n crossings, there is an n gen-
erator presentation of the knot group. Show that if this
presentation is used to compute the Alexander polynomial,
the result is the same as in the combinatorial calculation
in Chapter 3.




CHAPTER T7:
NUMERICAL INVARIANTS

A few methods for associating integers to knots have al-
ready appeared in the text. The genus is an important
example. Others include the signature, the determinant,
and the mod p rank. In this chapter many more will be
described. Some of these will seem to be very natural quan-
tities to study. Others, such as the degree of the Alexander
polynomial, may at first seem artificial; it is the relation-
ship between these invariants and the more natural ones
that is particularly interesting and useful.

It will be clear in this chapter that with the intro-
duction of each new invariant a host of questions arises
concerning its relationship with other invariants. Some of
these questions will be discussed, others will be presented
in the exercises. A few open questions will appear along
the way.

1 Summary of Several knot invariants have
Numerical Invariants been defined so far. These
are reviewed in this section.

In the next sections many new invariants will be described.
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GENUS _
Every knot forms the boundary -of an oriented surface
called a Seifert surface of the knot. The genus of a knot,
g(K), is the minimal genus that occurs among all Seifert
surfaces. Only the unknot has genus 0; the pretzel knots
form an infinite family of genus 1 knots. The proof of the
prime decomposition theorem was based on the result that
genus is additive under connected sum.

Another similar notion of genus is based on nonori-
entable surfaces. This concept plays a secondary role to
orientable genus, and will not be pursued.

MOD p RANK
Finding mod p labelings of a knot diagram can be reduced
to solving a system of linear equations mod p. The dimen-
sion of that solution space is called the mod p rank of the
knot. In Exercise 4.6 of Chapter 3 it was shown that, if
K has mod p rank n, then the number of mod p labelings
is p(p™ —1). It follows that mod p rank is additive under
connected sum. (See Exercise 1.1.)

DETERMINANT, DET(K)

The determinant was first defined combinatorially. How-
ever, the simplest definition is based on Seifert matrices.
If V is a Seifert matrix for a knot K, then the determinant
of K, det(K), is the absolute value of the determinant of
V +Vt. Thus, the determinant of the connected sum of
knots is the product of their determinants (see Chapter
6). ’

SIGNATURE, o(K)

The Seifert matrix also provides a means of defining the
signature of a knot. If V is a Seifert matrix for K, then
o(K) is the signature of V +V?*. Signature is additive
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under connected sum. See Exercise 3.6, Chapter 6, for a
proof. (w-signatures can also be defined using V'.)

As shown earlier, the right- and left-handed trefoils
have signature —2 and 2, respectively. Hence, the con-
nected sum of the two trefoils, called the square knot, has
signature 0. Connected sums of square knots provide an
infinite family of knots with signature 0.

DEGREE OF THE ALEXANDER POLYNOMIAL
Although not yet discussed, this invariant derives easily
from the polynomial itself. By multiplying by the appro-
priate power of ¢, the Alexander polynomial of a knot can
be normalized to have no negative powers of £, and so that
the constant term is nonzero. The degree of this polyno-
mial is called the degree of the Alexander polynomial.
The Alexander polynomial of a connected sum of
knots is the product of their individual polynomials (see
Chapter 6). Hence, the degree of the Alexander polynomial
adds under connected sum. An infinite family of knots, all
with Alexander polynomial 1 can be constructed from the
connected sums of copies of a single nontrivial polynomial
1 knot. Families containing only prime knots also exist.

EXERCISE

1.1. If a knot K has mod p rank n, then the number
of mod p labelings is p(p™ —1). Use this to show that the
number of labelings including ones with all labels the same
is given by p"t!. Use this to prove that mod p rank adds
under connected sum.

2 New Invariants The two invariants defined in
this section are the most nat-
ural in the study of knots. Surprisingly, although they are
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so simple to define their calculation turns out to be espe-
cially difficult, and the most natural questions concerning
them are unanswered.

CRrossING INDEX, C(K)

Each regular projection of a knot has a finite number of
double points. Different projections of a knot can have dif-
ferent numbers of double points, since Reidemeister moves
1 and 2 change the number of double points. The least
possible number of double points in a projection of a knot
is called the crossing index of the knot.

For example, the unknot has crossing index 0. It is
fairly easy to see that if a knot has a projection with one
or two crossings it is unknotted. Hence there are no knots
of crossing index 1 or 2. The trefoil has crossing index 3.

Although there are clearly only a finite. number of
knots with a given crossing index, listing them all is diffi-
cult. The chart of prime knots in the appendix is arranged
by crossing index. The number of knots of a given cross-
ing index seems to grow very rapidly, but little is known
in detail about this number.

At the present time it is conjectured, but unproven,
that the crossing index adds under connected sum. (This
has been proved for knots with alternating projections; a
knot diagram is alternating if, travelling around the knot,
overpasses and underpasses are met alternately. This re-
sult for alternating knots is discussed again in Chapter 10.)
As a measure of the present state of ignorance, we cannot
rule out the possibility that the connected sum of two knots
can have crossing number less than either factor!

UNKNOTTING NUMBER, U(K)
Given a knot diagram, it is always possible to find a set
of crossings such that if each is switched from right- to

left-handed or vice versa, the knot becomes unknotted.
One way to discover one set of such switches is to draw a
new knot diagram starting with the projection of the knot.
Trace the knot projection starting at a point p. Each cross-
ing point will be met twice in the tracing, and when it is
met for the second time, have that strand go under the
first. This is best understood via an example; the result of
this construction for a particular knot is illustrated in Fig-
ure 7.1. The proof that the algorithm produces an unknot
is left to the exercises.

N a
\ /[ \
N S

Figure 7.1

For a given knot diagram several different choices of
crossing change can lead to the unknot, and the num-
ber of crossing changes that are required might depend
on the choice of diagram. The minimal number of cross-
ing changes that is required, ranging over all possible dia-
grams, is called the unknotting number of the knot.

Given that the definition is taken over all possible dia-
grams, the unknotting number seems difficult to compute,
and in general it is. However, only the unknot has unknot-
ting number 0. The n-twisted doubled knots considered in
Exercise 2.2 of Chapter 3 (see also Exercise 1.3 of Chapter




134 KNOT THEORY

6) provide an infinite family of unknotting number 1 knots.
They are distinguished by their Alexander polynomials.

How the unknotting number behaves under connected
sums is a mystery. It is easily proved that the unknotting
number of the connected sum of knots is at most the sum
of their unknotting numbers, and the conjecture is that
unknotting number is additive. Scharlemann has proved
that the connected sum of two unknotting number one
knots is always of unknotting number two.

A fascinating example concerning the unknotting
number was discovered by S. Bleiler. Figure 7.2 presents
two diagrams of the same knot, the second with more cross-
ing than the first. No two crossing changes in the first
diagram produces an unknot, but changing the indicated
crossings in the second diagram does unknot it.

Figure 7.2

Bleiler proved that to demonstrate that the knot has un-
knotting number 2 the crossing number of the diagram
used cannot have the minimal number of crossings for the
knot. (Figure 7.2 presents only one minimal crossing dia-
gram of the knot; there conceivably could be more.) The
next section includes the needed techniques to prove that
this knot has unknotting number > 2.
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EXERCISES
2.1. Draw all knot diagrams having 2 crossings.

2.2. Prove that there are only a finite number of n-crossing
knots for each integer n.

2.3. Prove that the procedure outlined in the text actually
produces an unknotted curve.

2.4. Check that making the indicated crossing changes in
Bleiler’s example (Figure 7.2) produces the unknot. Show
that no two crossing changes in the first diagram gives the
unknot.

3 Braids and Bridges Although somewhat less in-

tuitive then the crossing in-

dex and the unknotting number, both of the invariants

described in this section have a long history in the study

of knots. The study of braids is particularly fascinating in

that it introduces group theory into the study of knots in
a completely new way.

\ l BRAIDS
An n-stranded braid consists of
n disjoint arcs running vertically
in 3 space. The set of starting
\ \

points for the arcs must lie im-
mediately above the set of end-
points. Figure 7.3 illustrates a 5-
braid. A formal definition need
\ not be given, and could be sup-
f plied by the reader.
A braid can be turned into
Figure 7.3 a link by attaching arcs to the
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top and bottom, as illustrated in Figure 7.4. Braids are
of interest in the study of knots and links because of a
theorem that states that every knot and link arises from a
braid in this way. The proof is constructive, as follows.
Draw the knot polygo-
nally; and orient it. Also pick
a point in the projection plane
which does not lie on the knot.
This point will be called the
braid azis. The goal of the
construction is to arrange for
every segment of the polygon
to run clockwise with respect
to the chosen point. If some
segment runs counter clock-
wise, it can be divided up
into several smaller segments,
each of which can be pulled
across the axis. This is illus-
trated in Figure 7.5. Exercise Figure 7.4
2 asks that you apply this algorithm to several knots to
draw them as closed braids.

Ry

Figure 7.5
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Different braids can close to form the same knot; the
braid index of a knot, denoted brd(K), is defined to be the
minimum number of strands that are required in a braid
description of a knot. Braid index is subadditive under
connected sum; that is, brd(K+#J) < brd(K) + brd(J). To
see this, note that given braid descriptions of two knots,
there is a simple way to construct a braid description of
their connected sum. This is illustrated in Figure 7.6.

-

Figure 7.6

3’,\,’\,

Artin introduced braids into the study of knots. What
is most fascinating about braids is that there is a natural
way to form groups using them. Given two n-stranded
braids, placing one on top of the other produces a new
braid. This operation induces a group operation on the
set of equivalence classes of n-stranded braids, where two
braids are equivalent if one can be deformed into the other
fixing all endpoints. In the exercises you are asked to derive
a few properties of this group, called the braid group.

One important theorem in the study of braids deserves
notice. As was mentioned, two distinct braids can produce
the same knot or link when closed up. For instance, sta-
bilization, as indicated in Figure 7.7, does not affect the
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resulting link. Also, if a given braid is multiplied on the
right and left by a second braid and its inverse (in the
braid group) the resulting links are the same. This oper-
ation is called conjugation in the braid group. A theorem

U "
| |
W~
N A

Figure 7.7

of Markov states that if two braids give the same knot or
link, then each can be repeatedly stabilized and conjugated
so that the same braid results. This theorem, along with a
knowledge of the structure of the braid group, was crucial
for Jones’ discovery of new polynomial invariants of knots.
More on that later.

BRIDGE INDEX, brg(K)

Any projection of a knot can be perturbed so that there are
a finite number of relative maxima. Figure 7.8 illustrates
a knot with the maxima and minima marked. You can
prove that the number of minima equals the number of
maxima. Different diagrams of a knot can certainly have
a different number of maxima. The minimum number of
such maxima (taken over all possible projections) is called
the bridge index of the knot, denoted brg(K).
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tion.

is 85.

eration.

0 THEOREM 1.
brg(K) + brg(J) - 1.

N
; %@Q

Figure 7.9

general result.

The first 3-bridge knot
in the table of prime knots
A theorem proved
by Schubert states that the
bridge index behaves nicely
under the connected sum op-

It should be clear that only
the unknot has bridge index
1. Hence the bridge index of
the trefoil is two, as can be
seen in its standard projec-

Figure 7.8

For knots K and J, brg(K#J) =

The proof is quite difficult.
One step is demonstrated eas-
ily in a diagram; the bridge
index satisfies the inequal-
ity brg(K#J) < brg(K)+
brg(J) — 1. Figure 7.9 illus-
trates the connected sum of a
2-bridge knot and a 3-bridge
knot drawn so that it has 4
bridges.

A simple corollary of the
Schubert theorem is that 2-

bridge knots are prime (See Exercise 3.3.) Even this is a
difficult geometric exercise without the aid of Schubert’s
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EXERCISES

3.1. The n stranded braid group is generated by the twists
o; which put a half twist between the i-th and (i + 1)-th
strand, as indicated in Figure 7.10 below. Show that the
two relations hold: 0i0:410; = 0i410:0:41, and o;0; =
0:0;, [i—j| > 1. (In fact, these two sets of relations gen-
erate all the relations in the braid group.)

O3 o1

Figure 7.10

3.2. Draw the knots 4, and 52 as closed braids.

3.3. How does Theorem 1 imply that 2-bridge knots are
prime?

3.4. Any 2-bridge knot can be drawn with one strand
straightened and not crossing any of the other strands,
as illustrated in Figure.7.11 below. Describe a method
for converting a 2-bridge diagram into this form. (With
this observation the classification of 2-bridge knots can be
stated. Any 2-bridge knot is determined by a sequence of
integers, [c1,¢2,...,Cq], Where ¢; is the number of right- or
left-handed twists, depending on ¢ odd or even.)
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The knot illustrated to the left

§ corresponds to [2,2,3]. To such

& 2 sequence one can form the

§ continued fraction,

ii_ £=C1+——-——11 .

i q C2F o K

B Now Schubert proved that two 2-
g bridge knots, with corresponding
§ fractions p/q and p/¢’, are equiv-
B alent if and only if p = p’ and
K q—¢ is divisible by p.)

g 3.5. Apply your algorithm from
¥ Exercise 3.4 above to illustrate
@ the knots 73 and 8, in standard form. What are the asso-
! f ciated fractions for each?

ool N

L

Figure 7.11

t 3.6. How does the continued fraction corresponding to a
§ 2-bridge knot compare to that of its mirror image? Which
i two bridge knots are equivalent to their mirror images?

4 Relations between Many of the numerical invari-
Numerical Invariants ants studied so far are closely
related. For instance, the

b combinatorial algorithm for computing Alexander polyno-
I mials immediately implies that the degree of the Alexander
b polynomial is less than the crossing number. Hence, the
- (2,n)-torus knot cannot be drawn with fewer than n cross-
| ings; the degree of its polynomial was discussed in Chapter
'3, Section 5, and shown to be n— 1. This section will fo-
| cus on demonstrating a few of the less obvious connections.
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The next section will deal with the independence of some
of the invariants. '

THE CROSSING NUMBER AND THE GENUS

Recall that Seifert’s algorithm provides a means of building
a Seifert surface for a knot from its diagram. In Exercise
3.4 of Chapter 4, it was show that the genus of the resulting
Seifert surface is given by 2g = ¢r — s+ 1, where cr is the
crossing number of the diagram and s is the number of
Seifert circles. Unless K is unknotted, s > 1, so 2g <
cr — 1. For the trefoil knot, 2g = cr — 1.

BRIDGE INDEX AND MOD p RANK

Any mod p labeling of an n-bridge knot is determined by
the labels on the n top arcs, or bridges. Hence, there can
be at most an n-dimensional space of labelings. Taking
into account the 1-dimensional space of trivial labelings,
one has that the mod p rank of a knot is at most the
brg(K)—1. As an application, the (3,3,3)-pretzel knot
has mod 3 rank 2, and so cannot be drawn with 2 bridges.
It is clearly a 3-bridge knot.

‘SIGNATURE AND THE UNKNOTTING NUMBER
Arguments concerning the unknotting number are much
more difficult. The result here states that 2u(K) > |o(K)]|.
The proof depends on showing that changing a-crossing in
a knot changes the signature by at most 2.

Fix a knot diagranrand a crossing in the diagram. If
Seifert’s algorithm is applied to the diagram the resulting
Seifert surface is built from many disks and the given cross-
ing corresponds to a band joining two of the disks. To find
the Seifert matrix the surface must be deformed into a sin-
gle disk with bands added. For the calculation this must

be done in such a way that the given band corresponds to
a single band on the final surface.

To see that this is possible, cut the Seifert surface
across the band of interest. The remaining surface can be
assumed to be connected. (Why?) Deform it into a single
disk with bands added. The original Seifert surface can
be recovered by reattaching the band that was cut to the
disk. Order the bands so that this final band is the last in
the ordering.

Changing the crossing of interest will have the effect
of twisting the last band. This will in turn only affect the
last diagonal entry of the Seifert matrix, V. Hence, the
diagonalization of V + V* only changes in its last entry,
and the signature can change by at most 2. The signature
of Bleiler’s example is 4, and this is how he proves it does
not have unknotting number 1.

MOD p RANK AND UNKNOTTING NUMBER

In general the unknotting number is at least as large as
the mod p rank, for all p. All that will be proved here
is that unknotting number 1 knots have mod p rank < 1.
The reader should interpret the statement and argument
in terms of colorings. (Colorings are often used in expos-
itory talks on knot theory to prove that the trefoil is not
unknotted. The following argument translates into an easy
proof of the much subtler fact that the square knot cannot
be unknotted with a single crossing change, regardless of
how it is drawn.)

Suppose that a knot K has unknotting number 1, and
fix a diagram for K and the crossing which changes X into
an unknot when reversed. If there is a nontrivial labeling of
K for which both the over and undercrossings are labeled
0 a contradiction arises. The given labeling remains con-
sistent when the crossing is changed, yielding a nontrivial
labeling of the unknot.

;
"
j
f
|
.
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If the knot has mod p rank > 1, then there are two
linearly independent labelings, both of which are 0 on the
overcrossing. Neither can be 0 on the undercrossing by the
previous argument. However subtracting some multiple
of one labeling from the other yields a labeling with the
bottom label 0. (Recall that the multiple is taken mod p.)
The new labeling is nontrivial by linear independence.

EXERCISES

4.1. Prove that for any knot K, the degree of the Alexander
polynomial is at most twice the genus.

4.2. Prove that the |o(K)| < 2¢9(K).

4.3. (a) Prove that the bridge index of a knot is at most
equal to the braid index.

(b) Find an example of a 2-bridge link that has braid index
greater that 2. (Linking numbers should help here.) Find
a similar example of a knot.

4.4. (a) Prove that for n even, an n-crossing knot has genus
at most (n—2)/2.

(b) Prove that if K has crossing number n, with n odd,
then either K is a (2,n)-torus knot, or K has genus at most
(n—3)/2: (The torus knot has genus (n —1)/2.)

5 Independence 6f While some numerical invari-
Numerical Invariants ants are closely related, oth-
ers are completely indepen-

dent. In most cases, this is demonstrated by construct-
ing families of examples. Some of the families of examples
are constructed from a few basic examples and connected

sums. Others are much more complicated. Here a few will
be surveyed, with the main focus on bridge index.

BRIDGE INDEX AND THE DEGREE OF THE ALEXANDER
PoLyNOMIAL

There is no relationship between the degree of the Alexan-
der polynomial and the bridge index of a knot. The (2,n)-
torus knots provide examples of two bridge knots with ar-
bitrarily high degree Alexander polynomial. On the other
hand, by forming the connected sum of many polynomial
1 knots, a polynomial 1 knot with large bridge index is
created.

INDEPENDENCE OF mod p RANKS

The trefoil knot has mod 3 rank 1 and mod 5 rank 0;
the (2,5)-torus knot has mod 3 rank 0 and mod 5 rank
1. Hence, the connected sum of %k trefoils and j 5-twist
knots has mod 3 rank k¥ and mod 5 rank j. It follows that
in general there is no relationship between the mod 3 and
mod 5 ranks.

Given any finite set of primes, similar examples can
be constructed showing the independence of mod p ranks.
Note that it is not possible to find a knot with specified
mod p ranks for all primes. For a given knot only a finite
number of the mod p ranks are positive. The determinant
of a knot provides a bound on the number of primes p for
which the mod p rank can be positive. Exercise 5.1 asks
for a precise bound.

SIGNATURE AND BRIDGE INDEX

The (2,n)-torus knot knot has signature n—1, and is a
two-bridge knot. (See Exercise 3.9, Chapter 6) Hence no
bound on the signature can be based on the bridge index.
On the other hand, the connected sum of square knots has
0 signature, but large bridge index, so no bound on the
bridge index follows from the signature.
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UNKNOTTING NUMBER AND THE BRIDGE INDEX

The (2,n)-torus knots give a family of 2-bridge knots with
arbitrarily high unknotting number. (Consider the signa-
ture.) The process of doubling a knot, as illustrated in
Figure 7.12, produces unknotting number 1 knots of large
bridge index.

Figure 7.12

Schubert proved that if a knot is doubled the bridge
index of the resulting knot is twice that of the original
knot, except in one special case. (See Exercise 5.3.) It is
clear that the bridge index of a doubled knot is at most
twice that of the original knot, but showing that there is
an equality is a lengthy and delicate geometric argument.

Without that delicate geometry, it is possible to prove
that certain doubled knots have high bridge index, using
the algebraic methods™of Chapter 5, specifically labelings
from the symmetric group, S,. One part of the argument
is based on the following theorem.

O THEOREM 2. If a knot K can be labeled with trans-
positions from S, then brg(K) >n—1.

NUMERICAL INVARIANTS 147

Proor

Given such a labeling of K, the set of labels generates
Sn. However, the labels on the bridges determine all the
other labels, as was seen in Chapter 5. Hence, the labels
that occur on the bridges must generate S,. According
to Exercise 1.8 of Chapter 5, S,, cannot be generated by
fewer than n — 1 transpositions. The result follows. O

To apply this to the construction of examples, suppose
that one starts with a knot diagram that has been consis-
tently labeled with 3-cycles from S,. (It is not required,
or for that matter even possible, for the labels to generate
Sr.) This labeling leads to a consistent labeling of some
double of the knot using transpositions, as follows: On the
bridges of the knot, if the original arc was labeled with the
3-cycle (a,b,c), label the two strands with (a,b) and (a,c).
The consistency condition leads to a labeling of the rest
of the doubled knot. Any problem with consistency at the
bottom can be cured by adding twists.

It may not be immediately clear why a consistent la-
beling occurs in general. The following observations should
clarify the situation. The two transpositions on a parallel
pair of strands on a bridge were chosen so that their prod-
uct is the 3-cycle with which the original strip was labeled.
When the consistency condition is used to determine the
rest of the labels, this property for adjacent pairs of labels
is true everywhere. That is, the labels on any parallel pair
of arcs have product equal to the 3-cycle that the original
arc of the knot was labeled with. It is now easily checked
that along the bottom strands, if the labels do not match
up, twists can be added to the pair of strands so that they
do match.

The discussion above shows how, given a knot which is
consistently labeled with 3-cycles from S,,, it is possible to
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produce some double of the knot which can be consistently
labeled with transpositions from S,,. These transpositions
will generate S, if the original set 3-cycle labels formed a
transitive set. (A set of permutations is called transitive if
for every positive integer ¢ < n, some product of elements
in the set maps 1 to i.) The proof of this algebraic condi-
tion is left to the reader as another exercise concerning the
symmetric group. The construction is completed by not-
ing that the connected sums of & (2,5)-torus knots can be
consistently labeled with a transitive set of 3-cycles from
S3.2r. Hence, an explicit example is constructed by form-
ing the connected sum of k (2,5)-torus knots, consistently
labeled with a transitive set of 3-cycles from Sspok.

GENUS AND THE BRIDGE INDEX

The (2,n)-torus knots provide examples of 2-bridge knots
of arbitrarily high genus. On the other hand, doubled
knots have genus 1. Figure 6.5 illustrates a genus one
surface bounded by a double of the unknot; the right-hand
band on that surface can itself be knotted so that the re-
sulting surface forms a genus 1 Seifert surface for an arbi-
trary doubled knot. It was just shown that doubled knots
can-have arbitrarily large bridge index.

EXERCISES

5.1. The number of primes for which a knot can have
nontrivial mod p labelings is bounded by a function of the
determinant. Find one such bound.

5.2. Why do doubled knets all have unknotting numbef 1?7

5.3. Find the example of a double of a knot for which the
bridge index is not twice the bridge index of the original
knot.

5.4. Check the details of the construction of the label-
ing of a doubled knot with transpositions, given a 3-cycle
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labeling of the knot being doubled. In particular, check
that consistency can be assured by adding the appropriate
twists at the bottom.

5.5. Show that the connected sum of k (2,5)-torus knots
can be labeled with 3-cycles from Ss.ok so that the set of
labels form a transitive set.

5.6. Figure 7.13 illustrates a genus 3 Seifert surface. Show
that its boundary has unknotting number 1. Show that
its Alexander polynomial is of degree 6, and hence the
knot is exactly genus 3. Generalize this example to find
unknotting number 1 knots of arbitrarily large genus. It is
more difficult, but possible, to show that there are genus
1 knots of high unknotting number.

F W

Figure 7.13




