Linear Algebra MA233

- 1. Let VS be a vector space (over \mathbb{R}) and suppose v_1, v_2, v_3, v_4, v_5 are vectors in VS. Know definition of all vector space concepts, definitions and axioms and be able to give definitions and answer true false questions with supportive reasons.
- 2. Let $T:\mathbb{R}^6 \to \mathbb{R}^3$ be a linear transformation. Let $T(v_1) = u_1$, $T(v_2) = u_2$, $T(v_3) = u_3$, $T(v_4) = u_4$, $T(v_5) = u_5$, $T(v_6) = u_6$. Prove that if

$$u_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, u_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, u_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
, then $\{v_1, v_2, v_3\}$ is independent.

3. Let $T:\mathbb{R}^6 \to \mathbb{R}^4$ be a linear transformation. Let $T(v_1) = u_1$, $T(v_2) = u_2$, $T(v_3) = u_3$, $T(v_4) = u_4$, $T(v_5) = u_5$, $T(v_6) = u_6$. Prove that if

$$u_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, u_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, u_3 = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 0 \end{bmatrix}, u_4 = \begin{bmatrix} 3 \\ 0 \\ 2 \\ 0 \end{bmatrix}, \text{ then the null space of T must have dimension at least 3.}$$

4. Let $T:\mathbb{R}^6 \to \mathbb{R}^3$ be a linear transformation. Let $T(v_1) = u_1$, $T(v_2) = u_2$, $T(v_3) = u_3$, $T(v_4) = u_4$, $T(v_5) = u_5$, $T(v_6) = u_6$. Prove or provide counter example:

If v_1, v_2, v_3 are independent, then u_1, u_2, u_3 are independent.

5. Let $T:\mathbb{R}^3 \to \mathbb{R}^5$ be a linear transformation. Let $T(v_1) = u_1$, $T(v_2) = u_2$, $T(v_3) = u_3$ Prove that if

$$v_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, v_{2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, v_{3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \text{ and } u_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, v_{2} = \begin{bmatrix} 0 \\ 2 \\ 2 \\ 0 \\ 0 \end{bmatrix}, v_{3} = \begin{bmatrix} 0 \\ 3 \\ 1 \\ 0 \\ 5 \end{bmatrix} \text{ then T is one-to-one.}$$

6. Let $T:\mathbb{R}^5 \to \mathbb{R}^3$ be a linear transformation. Let $T(v_1) = u_1$, $T(v_2) = u_2$, $T(v_3) = u_3$, $T(v_4) = u_4$, $T(v_5) = u_5$.

Let
$$v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $v_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $v_4 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $v_5 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$.

Let
$$u_1 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$
, $u_2 = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$, $u_3 = \begin{bmatrix} 2 \\ 2 \\ 4 \end{bmatrix}$, $u_4 = \begin{bmatrix} -2 \\ 3 \\ -2 \end{bmatrix}$, $u_3 = \begin{bmatrix} 1 \\ 5 \\ 0 \end{bmatrix}$

(a) What is the matrix representation of T?

(b) What it T(2,3,0,-2,7)?

(c) Give a basis for the null space of T.

(d) Give a basis for the column space (range) of T.

7. Let
$$T:(\mathbb{Z}_3)^5 \to (\mathbb{Z}_3)^5$$
 be a linear transformation. Let $T(v_1) = u_1$, $T(v_2) = u_2$, $T(v_3) = u_3$, $T(v_4) = u_4$, $T(v_5) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$, $v_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$, $v_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $v_4 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $v_5 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$.

Let $u_1 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$, $u_2 = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$, $u_3 = \begin{bmatrix} 2 \\ 2 \\ 4 \end{bmatrix}$, $u_4 = \begin{bmatrix} -2 \\ 3 \\ -2 \end{bmatrix}$, $u_3 = \begin{bmatrix} 1 \\ 5 \\ 0 \end{bmatrix}$

(a) What is the matrix representation of T?

(b) What it T(2,1,0,1,1)?

- (c) Give a basis for the null space of T.
- (d) How many vectors are there in the null space of T?
- (e) Give three distinct non zero vectors in the null space and indicate how you found them.
- (f) Give a basis for the column space of T (range of T).

(g) Give the entire column space (range of T).