All questions in this homework require drawing, so it hardly makes sense to use CAPA...
Make sure that what you hand in maintains the order of the problems given here.

Latches

5-1 A NOR latch starts with $\mathrm{Q}=0$. Then, the inputs Set and Reset are varied as seen in this timing diagram. Redraw this diagram, with the output Q underneath it.

5-2 The waveforms below are applied to the circuit below. Assuming that $Q=1$ initially, draw a timing diagram with both inputs and both outputs of the latch; your diagram will have 7 waveforms.

Flip-Flops

5-4 Copy the timing diagram to the right.
a) Suppose the inputs D_{1} and CLK are applied to a D flip-flop that triggers on positive-going transitions. At the bottom of the diagram show the Q output of the flip-flop, taking $\mathrm{Q}_{1}=1$ initially.
b) Repeat, with the inputs D_{2} and CLK. Just
 add a single new trace to the diagram, labeled Q_{2}.

5-5 Copy the timing diagram to the right, and below it show the Q output of a JK flip-flop that triggers on negative-going transitions, has its J and K inputs wired high, and has its other inputs as shown. Assume that $Q=0$ initially.

5-6 The following signals are applied to a D flip-

flop with a negative transition trigger. Copy the timing diagram, and add to it the output Q , assuming that Q is initially low and that the flip-flop's hold time is $t_{H}=0 \mathrm{~s}$. Then, draw a circuit that will delay the output by two clock periods.

5-7 Compare the operation of the D latch with a falling-edge-triggered D flip-flop by applying the waveforms to the right to each and determining the Q waveforms. Take the Q's to be initially low. Copy the timing
 diagram, and add your two (clearly labeled) outputs to it.

5-8 Two D flip-flops are connected as shown to the right. $Q 1$ and $Q 2$ are both initially low. Draw a timing diagram with CLK and the circuit outputs ($Q 1$ and $\overline{Q 2}$). Also, determine the frequency of those outputs. Assume that these flip-flops have a hold time of 0ns.
5-9 In the previous problem, you saw how to make a D-FF operate in a toggle mode. Explain why the same idea could not be implemented with a D latch.

