Basic vector analysis

Cartesian

$\vec{r}=r$ "vector"
$\hat{r}=r$ "unit vector" or the direction of \vec{r}
$r=$ magnitude of \vec{r}
$\vec{r}=(X \hat{\imath}+Y \hat{\jmath}+Z \hat{k})$
$\overrightarrow{r^{\prime}}=\left(X^{\prime} \hat{\imath}+Y^{\widehat{j}}+Z^{\prime} \hat{k}\right)$
$\overrightarrow{\mathcal{R}}=\left(\left(X-X^{\prime}\right) \hat{\imath}+\left(Y-Y^{\prime}\right) \hat{\jmath}+\left(Z-Z^{\prime}\right) \hat{k}\right)$

Cylindrical

$\vec{r}=(s, \varphi, z)$
$\mathrm{s}=\sqrt{x^{2}+y^{2}}$
$\varphi=\tan ^{-1}\left(\frac{y}{x}\right)$
$z=z$

Sphrerical

$\vec{r}=(r, \Theta, \varphi)$
$r=\sqrt{x^{2}+y^{2}+z^{2}}$
$\theta=\tan ^{-1} \sqrt{x^{2}+y^{2}} / z$
$\varphi=\tan ^{-1}\left(\frac{y}{x}\right)$

Always Start with your r and r ' definitions in Cartesian because cylindrical and spherical coordinates do not add and subtract easily.

Use cylindrical coordinates in cases where there is a line, ring, disk, or cylinder of charge

Use spherical in cases where there is a point charge, shell of charge, or sphere of charge.

Symmetry

In many problems certain axis and parameters can be eliminated via symmetric arguments

Symmetry involves a rotation, translation, or reflection about an axis resulting in the shape looking identical.

Symmetry can also result in components cancelling which can make a problem easier to deal with

Basic Electric field symmetries assuming constant charge density:

Sphere: variable in r
Infinite line: variable in s
Finite Cylinder: dependant on s and z
Infinite plane: constant
Ex: Find the direction of an E field of 4 points of

Simply by looking at the problem we can asses that the x and y components are 0 so the E field must point in the \hat{s} direction

Brute Force \vec{E} Field Equation

$$
\begin{array}{rlr}
\vec{r}=r \hat{r} & \vec{E} & =\frac{1}{4 \pi \varepsilon_{0}} \int \rho \frac{\overrightarrow{\mathcal{R}}}{\mathcal{R}^{3}} \mathrm{~d} \boldsymbol{\tau}^{\prime} \\
\vec{E} & =\frac{1}{4 \pi \varepsilon_{0}} \int \rho \frac{\hat{\mathcal{R}}}{\mathcal{R}^{2}} \mathrm{~d} \boldsymbol{\tau}^{\prime} & \text { 3D shape } \\
\vec{E} & =\frac{1}{4 \pi \varepsilon_{0}} \int \sigma \frac{\hat{\mathcal{R}}}{\mathcal{R}^{2}} \mathrm{~d} a^{\prime} & \text { 2D shape } \\
\vec{E} & =\frac{1}{4 \pi \varepsilon_{0}} \int \lambda \frac{\hat{\mathcal{R}}}{\mathcal{R}^{2}} \mathrm{~d} l^{\prime} & \text { 1D shape }
\end{array}
$$

$\begin{aligned} & \text { Gauss's Law } \\ & \text { Integral form }\end{aligned} \oint E(r) \cdot d A=\frac{1}{\varepsilon_{0}} \int \rho d \tau$

Standard E Field Solutions

Point Charge $\quad \vec{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}} \hat{r}$
Infinite Plane $\quad \vec{E}=\frac{\sigma}{2 \varepsilon_{0}} \hat{n}$
Cylinder/Line $\quad \vec{E}=\frac{\lambda}{2 \pi \varepsilon_{0} S} \hat{S}$

Spherical surface
(Ex):
$\vec{E}=\frac{\alpha\left(a^{4}-b^{4}\right)}{4 \varepsilon_{0} r^{2}} \hat{r}$

Electric Potentials

$$
\begin{aligned}
& E=-\nabla V \\
& V(b)=-\int_{a}^{b} \vec{E} \cdot \overrightarrow{d l}+V(a) \\
& \nabla^{2} V=-\frac{\rho}{\varepsilon_{0}} \\
& V(r)=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\rho(r)}{\mathcal{R}} d^{3}
\end{aligned}
$$

Conductors

In a conductor E field is 0 .

Outside a conductor the E field mimics a point charge and is perpendicular to the surface.

Net charge density is 0 .

Any charge density is confined to the surface.

$$
\begin{gathered}
Q_{\text {enc }}=0 \\
V_{\text {outside }}=\frac{q}{4 \pi \varepsilon_{0} r} \hat{r} \\
V_{\text {inside }}=\frac{q}{4 \pi \varepsilon_{0} b} \hat{r}
\end{gathered}
$$

Work and Energy

$$
\begin{aligned}
W & =\frac{1}{2} \sum_{i=1}^{n} q_{i} V\left(r_{i}\right) \\
W & =\frac{1}{2} \int \rho(r) V(r) d^{3} r \\
U_{E} & =\frac{\epsilon_{0}}{2} \int|E|^{2} d^{3} r \\
W & =U_{2}-U_{1}
\end{aligned}
$$

Capacitors

$$
\begin{aligned}
& Q=C V \\
& Q=V \times \frac{A \epsilon_{0}}{d} \\
& \mathrm{U}=\frac{\epsilon_{0}}{2}\left(\frac{Q^{2}}{A^{2} \epsilon_{0}{ }^{2}}\right)(A d)=\frac{1}{2} \frac{Q^{2} d}{A \epsilon_{0}}=\frac{1}{2} \frac{Q^{2}}{C}=\frac{1}{2} C V^{2}
\end{aligned}
$$

Magnetostatics

$$
\begin{gathered}
\boldsymbol{F}_{\mathrm{Mag}}=q(\boldsymbol{v} \times \boldsymbol{B}) \quad \text { (Point charge) } \\
\boldsymbol{F}_{\mathrm{Mag}}=\int(\boldsymbol{v} \times \boldsymbol{B}) \lambda \mathrm{d} l=\int(\boldsymbol{I} \times \boldsymbol{B}) \mathrm{d} l \\
\boldsymbol{F}_{\mathrm{Mag}}=\int(\boldsymbol{v} \times \boldsymbol{B}) \sigma \mathrm{d} a=\int(\boldsymbol{K} \times \boldsymbol{B}) \mathrm{d} a \\
\boldsymbol{F}_{\mathrm{Mag}}=\int(\boldsymbol{v} \times \boldsymbol{B}) \rho \mathrm{d} \tau=\int(\boldsymbol{J} \times \boldsymbol{B}) \mathrm{d} \tau
\end{gathered}
$$

(a)

(c)

Steady Currents and Biot-Savart Law

$$
\begin{gathered}
\boldsymbol{\nabla} . \boldsymbol{J}=-\frac{\partial \rho}{\partial t} \text { Continuity equation } \\
\boldsymbol{B}(\boldsymbol{r})=\frac{\mu_{0}}{4 \pi} \int \frac{\boldsymbol{I} x \widehat{\mathcal{R}}}{\mathcal{R}^{2}} \mathrm{~d} l^{\prime}=\frac{\mu_{0}}{4 \pi} I \int \frac{d \boldsymbol{l}^{\prime} x \widehat{\mathcal{R}}}{\mathcal{R}^{2}}
\end{gathered}
$$

Example

Find the magnetic field a distance s from a long straight wire carrying a steady current I

$$
\begin{gathered}
\left|d \boldsymbol{l}^{\prime} x \widehat{\mathcal{R}}\right|=\mathrm{d} l^{\prime} \operatorname{Sin} \alpha=\mathrm{d} l^{\prime} \operatorname{Cos} \theta \quad l^{\prime}=s \tan \theta \rightarrow \mathrm{~d} l^{\prime}=\frac{s}{\operatorname{Cos}^{2} \theta} \mathrm{~d} \theta \\
s=\mathcal{R} \operatorname{Cos} \theta \rightarrow \frac{1}{\mathcal{R}^{2}}=\frac{\operatorname{Cos}^{2} \theta}{s^{2}} \\
B=\frac{\mu_{0} I}{4 \pi} \int_{\theta_{1}}^{\theta_{2}}\left(\frac{\operatorname{Cos}^{2} \theta}{s^{2}}\right)\left(\frac{s}{\operatorname{Cos}^{2} \theta}\right) \cos \theta \mathrm{d} \theta=\frac{\mu_{0} I}{4 \pi} \int_{\theta_{1}}^{\theta_{2}} \operatorname{Cos} \theta \mathrm{~d} \theta=\frac{\mu_{0} I}{4 \pi s}\left(\operatorname{Sin} \theta_{2}-\operatorname{Sin} \theta_{1}\right) \\
B_{\text {infinite_wire }}=\frac{\mu_{0} I}{2 \pi s}
\end{gathered}
$$

Ampere's Law

$$
\begin{gathered}
\boldsymbol{\nabla} \times \boldsymbol{B}=\mu_{0} \boldsymbol{J}(\boldsymbol{\nabla} \times \boldsymbol{B}) \cdot \mathrm{d} \boldsymbol{a}=\oint \boldsymbol{B} \cdot \mathrm{d} \boldsymbol{l}=\mu_{0} \int \boldsymbol{J} \cdot \mathrm{~d} \boldsymbol{a} \\
\int \boldsymbol{J} \cdot \mathrm{~d} \boldsymbol{a}=\text { total current passing through the surface } \\
\oint B \cdot \mathrm{~d} l=\mu_{0} I_{\mathrm{enc}}
\end{gathered}
$$

Example
Find the magnetic field a distance s from a long straight wire carrying a steady current I

$$
\oint B . \mathrm{d} l=B \int \mathrm{~d} l=B 2 \pi s=\mu_{0} I_{\mathrm{enc}}=\mu_{0} I==>\quad \frac{\mu_{0} I}{2 \pi s}
$$

B-Field for different shapes

```
Magnetic field of an infinite uniform surface current \(\mathbf{K}=k \hat{x}\)
```


$$
B=\left\{\begin{aligned}
\left(\frac{\mu_{0}}{2}\right) k \hat{y} & \text { for } z<0 \\
-\left(\frac{\mu_{0}}{2}\right) k \hat{y} & \text { for } z>0
\end{aligned}\right.
$$

$$
\text { Magnetic field of a very long solenoid with } \mathrm{K}=n I
$$

$$
B= \begin{cases}\mu_{0} n I \hat{z} & \text { inside the solenoid } \\ 0 & \text { outside the coil }\end{cases}
$$

Boundary Conditions

$$
\begin{aligned}
& B^{\text {perp }}{ }_{\text {above }}=B^{\text {perp }}{ }_{\text {below }} \\
& B \|_{\text {above }}-B^{\|}{ }_{\text {below }}=\mu_{0} K
\end{aligned}
$$

Other stuff to know

$$
\begin{aligned}
\nabla \cdot \boldsymbol{B}=0 & W_{\mathrm{mag}}=0 \quad \boldsymbol{m}=I \boldsymbol{a} \quad \text { (Magnetic dipole moment) } \\
& \text { Here } \boldsymbol{a} \text { is the vector area of the loop }
\end{aligned}
$$

Maxwell's Equations

Equation	Name
$\boldsymbol{\nabla} \cdot \overrightarrow{\boldsymbol{E}}=\frac{\boldsymbol{\rho}}{\boldsymbol{\epsilon}_{\mathbf{0}}}$	Gauss' Law
$\boldsymbol{\nabla} \times \overrightarrow{\boldsymbol{E}}=-\frac{\boldsymbol{d} \overrightarrow{\boldsymbol{B}}}{\boldsymbol{d} \boldsymbol{t}}$	Faraday's Law
$\boldsymbol{\nabla} \cdot \overrightarrow{\boldsymbol{B}}=\mathbf{0}$	No-Name Law/ Gauss' Law for B-fields
$\boldsymbol{\nabla} \times \overrightarrow{\boldsymbol{B}}=\mu_{0} \overrightarrow{\boldsymbol{J}}+\mu_{0} \boldsymbol{\epsilon}_{\mathbf{0}} \frac{\boldsymbol{d} \overrightarrow{\boldsymbol{E}}}{\boldsymbol{d} \boldsymbol{t}}$	Ampere's Law

$\boldsymbol{\rho}$ - volume charge density ($\mathrm{C} / \mathrm{m}^{3}$)
J -- current density ($\mathrm{A} / \mathrm{m}^{2}$)

Faraday's Law

$$
\nabla \times \vec{E}=-\frac{d \vec{B}}{d t}
$$

According to Stokes' Theorm

$$
\begin{aligned}
\int(\nabla \times \vec{E}) \cdot d s & =\int \vec{E} \cdot d \boldsymbol{l}=\frac{-d \phi_{B}}{d t} \\
\phi_{B} & =\oint B \cdot d \boldsymbol{B} \\
\varepsilon & =-\frac{d \phi_{B}}{d t} \quad \text { Lenz's Law (emf) }
\end{aligned}
$$

**Induced currents always oppose changes in magnetic field

Inductors: Loop of Wire

A loop of current produces current in any nearby loops.

$$
\phi_{\mathrm{B}}=L I
$$

For a magnetic field produced by wires themselves

$$
\xi=-L \frac{\mathrm{~d} I}{\mathrm{~d} t}
$$

Inductors: Solenoid

$$
L=\frac{\mu_{0} N^{2} A}{l}
$$

N - number of turns
A- cross-sectional area
I - length

Electric Dipoles

Dipole moment

$$
\vec{p}=q r_{1}-q r_{2}=q d
$$

Dipole moment- collection of charges

$$
\vec{p}=\sum_{i} q_{i} d_{i}
$$

Electric potential from dipole moment

$$
\mathbf{V}(\overrightarrow{\mathbf{r}})=\frac{1}{4 \pi \varepsilon_{0}} \frac{\overrightarrow{\mathbf{p}} \cdot \hat{\mathbf{r}}}{\mathbf{r}^{2}}
$$

Magnetic Dipoles

Remember:

--no magnetic monopoles
--cannot be decomposed like E dipoles

Dipole moment

$$
\vec{m}=I A
$$

\mathbf{m} - magnetic dipole moment (Am^{2})
A- vector normal to surface (area)

Matter Effects - Dielectrics

Materials that can be polarized in an applied field and thus slightly cancel the electric field. Parameterized by making the substitution:

$$
\varepsilon_{0} \rightarrow \varepsilon=\kappa \varepsilon_{0}
$$

κ is the dielectric constant

Most common: insulator placed between two plates, capacitance becomes

$$
C=\frac{\varepsilon A}{d}=\kappa \frac{\varepsilon_{0} A}{d}
$$

Electromagnetic waves - Wave Equation
Assuming vacuum

Similarly

And

$$
\begin{gathered}
\nabla \mathrm{x}(\nabla \mathrm{x} \mathbf{E})=\nabla(\nabla \cdot \mathbf{E})-\nabla^{2} \mathbf{E}=-\frac{\partial}{\partial \mathrm{t}}(\nabla \times \mathbf{B}) \\
\nabla^{2} \mathbf{E}=\mu_{0} \varepsilon_{0} \frac{\partial^{2} \mathbf{E}}{\mathrm{t}^{2}} \\
\nabla^{2} \mathbf{B}=\mu_{0} \varepsilon_{0} \frac{\partial^{2} \mathbf{B}}{\partial \mathrm{t}^{2}}
\end{gathered}
$$

$$
c=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}
$$

Electromagnetic waves - Wave Equation

Wave solutions have the explicit form
$\tilde{\mathbf{E}}(\boldsymbol{r})=\tilde{E}_{0} e^{i(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)} \widehat{\boldsymbol{n}} \quad \widetilde{\mathbf{B}}(\boldsymbol{r})=\frac{1}{c} \tilde{E}_{0} e^{i(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)}(\widehat{\boldsymbol{k}} \times \widehat{\boldsymbol{n}})$
Where $\widehat{\boldsymbol{k}}$ is the propagation vector describing the direction in which the wave travels and $\widehat{\boldsymbol{n}}$ is the polarization vector of the electric field only.
Rule for notation: calculate everything in the complex formalism and then take the real part $\mathbf{E}=\operatorname{Re}(\widetilde{\mathbf{E}})$

Fine for superpositions, since the real part of a sum is the sum of the real parts, but it's more complicated for products.

Electromagnetic waves - Poynting Vector

Flux of energy of the wave

$$
\mathbf{S}=\frac{1}{\mu_{0}}(\mathbf{E} \times \mathbf{B})=\frac{1}{2 \mu_{0}} \operatorname{Re}\left(\tilde{\mathbf{E}} \times \widetilde{\mathbf{B}}^{*}\right)
$$

Intensity of the wave is often easier to deal with because of extremely high frequencies

$$
I=\langle S\rangle=\frac{1}{2} c \varepsilon_{0} E_{0}^{2}
$$

Electromagnetic waves - Radiation

Larmor formula: An accelerating point charge radiates total power

$$
P=\frac{q^{2} a^{2}}{6 \pi \varepsilon_{0} c^{3}}=\frac{\mu_{0} q^{2} a^{2}}{6 \pi c}
$$

Only holds for small velocities.
Oscillating dipole with dipole moment

$$
\mathbf{p}(\mathrm{t})=p_{0} \cos (\omega t) \hat{\mathbf{z}}
$$

And intensity

$$
\langle S\rangle=\left(\frac{\mu_{0} p_{0}^{2} \omega^{4}}{32 \pi^{2} c}\right) \frac{\sin ^{2} \theta}{r^{2}}
$$

Falls off like $\frac{1}{r^{2}}$ and the $\sin ^{2} \theta$ means no radiation occurs along the dipole
axis

Electromagnetic waves - Radiation

Integrate over a sphere of radius r gives the total power

$$
\langle P\rangle=\frac{\mu_{0} p_{0}^{2} \omega^{4}}{12 \pi c}
$$

Analogous formula for the magnetic dipole radiation

$$
\langle P\rangle=\frac{\mu_{0} m_{0}^{2} \omega^{4}}{12 \pi c^{3}}
$$

Where m_{0} is the average magnetic dipole moment.

