
Cartesian

Cylindrical

Sphrerical

Always	Start	with	your	r	and	r’	definitions	in	
Cartesian	because	cylindrical	and	spherical	
coordinates	do	not	add	and	subtract	easily.

𝑟 = (𝑠, φ, 𝑧)
s= 𝑥+ + 𝑦+�

φ = 𝑡𝑎𝑛23(4
5
)

𝑧 = 𝑧

Use	cylindrical	coordinates	in	cases	where	
there	is	a	line,	ring,	disk,	or	cylinder	of	charge	

Basic vector analysis

𝑟 = (𝑋𝚤̂ + 𝑌𝚥̂ + 𝑍𝑘=)
𝑟′ = (𝑋′𝚤̂ + 𝑌′𝑗@ + 𝑍′𝑘=)
ℛ = ( 𝑋 − 𝑋C 𝚤̂ + 𝑌 − 𝑌C 𝚥̂ + (𝑍 − 𝑍C)𝑘=)

𝑟 = 𝑟	"𝑣𝑒𝑐𝑡𝑜𝑟"
�̂� = 𝑟	"unit	vector"	or	the	direction	of	𝑟
r= magnitude	of	𝑟

𝑟 = (𝑟,ϴ, φ)
𝑟 = 𝑥+ + 𝑦+ + 𝑧+�

ϴ = 𝑡𝑎𝑛23 𝑥+ + 𝑦+� /𝑧
φ = 𝑡𝑎𝑛23(

𝑦
𝑥
)

Use	spherical	in	cases	where	there	is	a	point	
charge,	shell	of	charge,	or	sphere	of	charge.



Symmetry

In	many	problems	certain	axis	and	parameters	
can	be	eliminated	via	symmetric	arguments

Symmetry	involves	a	rotation,	translation,	or	
reflection	about	an	axis	resulting	in	the	shape	
looking	identical.

Basic Electric field symmetries assuming constant 
charge density: 
Sphere:	variable	in	r
Infinite	line:	variable	in	s
Finite	Cylinder:	dependant on	s	and	z
Infinite	plane:	constant

Symmetry	can	also	result	in	components	
cancelling	which	can	make	a	problem	easier	
to	deal	with

Ex:	Find	the	direction	of	
an	E	field	of	4	points	of	
charge	q	at	positions

𝑟′1 = 𝑎𝚤̂ + 𝑏𝚥̂ + 0𝑘=
𝑟C2 = (𝑎𝚤̂ − 𝑏𝚥̂ + 0𝑘=)
𝑟C3 = (−𝑎𝚤̂ − 𝑏𝚥̂ + 0𝑘=)
𝑟C4 = (−𝑎𝚤̂ + 𝑏𝚥̂ + 0𝑘=)

z

x

y

Simply	by	looking	at	the	problem	we	
can	asses	that	the	x	and	y	
components	are	0	so	the	E	field	must	
point	in	the	�̂�	direction



Brute	Force	𝐸 Field	Equation
𝑟 = 𝑟�̂�

𝐸 =
1

4πεc
d ρ

ℛ=
ℛ+

�

�

d𝞃′

𝐸 =
1

4πεc
d ρ

ℛ
ℛg

�

�

d𝞃′

𝐸 =
1

4πεc
d σ

ℛ=
ℛ+

�

�

d𝑎′

𝐸 =
1

4πεc
d ƛ

ℛ=
ℛ+

�

�

d𝑙′

3D	shape

2D	shape

1D	shape

Gauss’s Law 
Integral form

k𝐸(𝑟) l 𝑑𝐴
�

�

=
1
𝜀c
d 𝜌	𝑑𝜏
�

�



Standard	E	Field	Solutions

Point	Charge 𝐸 =
1

4𝜋𝜀c
𝑞
𝑟+
�̂�

𝐸 =
𝜎
2𝜀c

𝑛uInfinite	Plane

Cylinder/Line 𝐸 =
ƛ

2𝜋𝜀c𝑠
�̂�

Spherical	surface	
(Ex):

𝐸 =
𝛼(𝑎w − 𝑏w)
4𝜀c𝑟+

�̂�

a

b

𝜌(𝑟) = 𝛼𝑟



Electric	Potentials
𝐸 = −𝛻𝑉

𝑉 𝑏 = −d 𝐸 l 𝑑𝑙 + 𝑉(𝑎)
z

{

𝛻+𝑉 = −
ρ
εc

𝑉 𝑟 =
1

4𝜋𝜀c
d
𝜌 𝑟
ℛ

�

�

𝑑g
𝐸𝑉

𝜌

𝐸 = −𝛻𝑉

𝑉 𝑏 = −d 𝐸
z

{
l 𝑑𝑙 + 𝑉(𝑎)



Conductors

In	a	conductor	E	field	is	0.

Outside	a	conductor	the	E	field	mimics	a	point	charge	
and	is	perpendicular	to	the	surface.

Net	charge	density	is	0.

Any	charge	density	is	confined	to	the	surface.

𝑄}~� = 0

𝑉������} =
𝑞

4𝜋𝜀c𝑟
�̂�

𝑉�~���} =
𝑞

4𝜋𝜀c𝑏
�̂�

a

bq



Work	and	Energy	

𝑊 =
1
2
�𝑞�𝑉(𝑟�)
~

��3

𝑊 =
1
2
d𝜌 𝑟 𝑉 𝑟 𝑑g𝑟
�

�

𝑈� =
𝜖c
2
d 𝐸 +𝑑g𝑟
�

�
𝑊 = 𝑈+ − 𝑈3



Capacitors

𝑄 = 𝐶𝑉

𝑄 = 𝑉×
𝐴𝜖c
𝑑

U =
𝜖c
2

𝑄+

𝐴+𝜖c+
𝐴𝑑 =

1
2
𝑄+𝑑
𝐴𝜖c

=
1
2
𝑄+

𝐶
=
1
2
𝐶𝑉+

d

Q+

Q-

A



Magnetostatics
𝑭𝐌𝐚𝐠 	= 𝑞	 𝒗		𝑥		𝑩 (Point	charge)

𝑭𝐌𝐚𝐠 = d 𝒗		𝑥		𝑩 	𝜎	d𝑎
�

�
= d 𝑲		𝑥		𝑩 	d𝑎

�

�

𝑭𝐌𝐚𝐠 = d 𝒗		𝑥		𝑩 	𝜌	d𝜏
�

�
= d 𝑱		𝑥		𝑩 	d𝜏

�

�

𝑭𝐌𝐚𝐠 = d 𝒗		𝑥		𝑩 	𝜆	d𝑙
�

�
= d 𝑰		𝑥		𝑩 	d𝑙

�

�

𝐹��� 	=	↑ 𝐵 = 𝑋		𝑋		𝑋



Steady	Currents	and	Biot-Savart	Law
𝛁. 𝑱 = −

𝜕𝜌
𝜕𝑡

𝛁. 𝑱 = 0 For	steady	currentsContinuity	equation r

d𝑙’

I

ℛ𝑩	 𝒓 =
𝜇c
4	𝜋

	¤
𝑰		𝑥		𝓡@
ℛ+ 	d𝑙C

�

�

=
𝜇c
4	𝜋

	𝐼	¤
𝑑𝒍C	𝑥		𝓡@
ℛ+

�

�

Find	the	magnetic	field	a	distance	s	from	a	long	
straight	wire	carrying	a	steady	current	I

Example

P

s ℛ

𝑙’
d𝑙’

𝜃
𝛼𝑑𝒍C𝑥		𝓡@ = d𝑙C		Sin	𝛼 = d𝑙C		Cos	𝜃 𝑙C = 𝑠		tan	𝜃	 → 	d𝑙C =

𝑠
Cos+	𝜃

	dθ

𝑠 = ℛ		Cos	𝜃 →
1
ℛ+ =

Cos+	𝜃
𝑠+

𝐵 =
𝜇c	𝐼
4	𝜋

	¤
Cos+	𝜃
𝑠+

	
𝑠

Cos+	𝜃
	Cosθ	d𝜃

®¯

®°

=
𝜇c	𝐼
4	𝜋

	d Cos	𝜃	d𝜃
®¯

®°
=
𝜇c	𝐼
4	𝜋𝑠

	 Sin	𝜃+ − Sin	𝜃3

𝐵±²³±²±´µ_	·±¸µ =
𝜇c	𝐼
2	𝜋	𝑠



Ampere’s	Law
𝛁	𝑥		𝑩 = 𝜇c	𝑱 d 𝛁𝑥	𝑩 . d𝒂

�

�
= d𝑩. d𝒍

�

�
= 𝜇c	d𝑱. d𝒂

�

�

	d𝑱. d𝒂
�

�
= total	current	passing	through	the	surface

d𝐵. d𝑙
�

�
= 𝜇c	𝐼µ²¼

Find	the	magnetic	field	a	distance	s	from	a	long	
straight	wire	carrying	a	steady	current	I

Example

s

𝑰

B
d𝐵. d𝑙
�

�
= 𝐵	dd𝑙

�

�
= 𝐵	2	𝜋	𝑠 = 𝜇c	𝐼µ²¼ = 𝜇c	𝐼		 ==> 		𝐵 =

𝜇c	𝐼
2	𝜋	𝑠



B-Field	for	different	shapes
Magnetic	field	of	an	infinite	uniform	surface	current	𝐊 = 𝑘	𝑥u

𝐵 = 							
𝜇c
2

	𝑘	𝑦u											for				𝑧 < 0

−
𝜇c
2

	𝑘	𝑦u												for				𝑧 > 0

Magnetic	field	of	a	very	long	solenoid	with	K = 𝑛	𝐼

𝐵 =						𝜇c	𝑛I		�̂�										inside		the		solenoid

0																	outside		the		coil



Boundary	Conditions	

𝐵Åµ¸Å�ÆÇÈµ = 𝐵Åµ¸ÅÆµÉÇ·

𝐵||�ÆÇÈµ − 𝐵||ÆµÉÇ· = 𝜇c	𝐾



Other	stuff	to	know
𝛁. 𝑩 = 0 𝑊Ì�� = 0 𝒎 = 𝐼	𝒂 (Magnetic	dipole	moment)

Here	𝒂	is	the	vector	area	of	the	loop



Maxwell’s	Equations

Equation Name

𝛁 l 𝑬 =
𝝆
𝝐𝟎

Gauss’	Law

𝛁×𝑬 = −
𝒅𝑩
𝒅𝒕

Faraday’s	Law

𝛁 l 𝑩 = 𝟎 No-Name Law/
Gauss’	Law	for	B-fields

𝛁×𝑩 = 𝜇0	�⃗� + 𝜇0𝝐𝟎
𝒅𝑬
𝒅𝒕

Ampere’s	Law
𝝆 − volume	charge	density	(C/m3)
J -- current	density	(A/m2)



Faraday’s	Law

𝛁×𝑬 = −
𝒅𝑩
𝒅𝒕

According	to	Stokes’	Theorm ….

d(𝛁×𝑬
�

�

) l 𝒅𝒔 = d𝑬
�

�

l 𝒅𝒍 =
−𝒅𝝓𝑩
𝒅𝒕

𝝓𝑩 = k𝑩 ⋅ 𝐝𝑺
�

�

𝜺 = −
𝒅𝝓𝑩
𝒅𝒕

**Induced	currents	always	oppose	changes	in	magnetic	field

Lenz’s	Law	(emf)



Inductors:	Loop	of	Wire
A	loop	of	current	produces	current	in	any	nearby	loops.

𝝓𝐁 = 𝑳𝑰

For	a	magnetic	field	produced	by	wires	themselves

𝝃 = −𝑳
𝐝𝑰
𝐝𝒕



Inductors:	Solenoid	

𝑳 =
𝝁𝟎𝑵𝟐𝑨
𝒍

𝑵- number	of	turns
A- cross-sectional	area
l- length



Electric	Dipoles
Dipole	moment	of	two	point	charges

𝒑 = 𝒒𝒓𝟏 − 𝐪𝒓𝟐 = 𝒒𝒅

Dipole	moment- collection	of	charges

𝑝 =�𝑞�𝑑�

�

�
Electric	potential	from	dipole	moment

𝐕 �⃗� = 𝟏
𝟒𝛑𝜺𝟎

𝐩⋅𝐫u
𝐫𝟐

-q

+q
d

r1

r2

**Note	Và1/r2	and	Eà 1/r3



Magnetic	Dipoles
Remember:
--no	magnetic	monopoles
--cannot	be	decomposed	like	E	dipoles

Dipole	moment	of	two	point	charges

𝒎 = 𝑰𝑨

m- magnetic	dipole	moment	(Am2)
A- vector	normal	to	surface	(area)



Matter	Effects	- Dielectrics
Materials	that	can	be	polarized	in	an	
applied	field	and	thus	slightly	cancel	
the	electric	field.	Parameterized	by	
making	the	substitution:

is	the	dielectric	constant

Most	common:	insulator	placed	
between	two	plates,	
capacitance	becomes



Electromagnetic	waves	- Wave	Equation
Assuming	vacuum

Similarly

And



Electromagnetic	waves	- Wave	Equation
Wave	solutions	have	the	explicit	form

Where							is	the	propagation	vector	describing	the	direction	in	which	the	
wave	travels	and							is	the	polarization	vector	of	the	electric	field	only.

Rule	for	notation:	calculate	everything	in	the	complex	formalism	and	then	
take	the	real	part

Fine	for	superpositions,	since	the	real	part	of	a	sum	is	the	sum	of	the	real	
parts,	but	it’s	more	complicated	for	products.	



Electromagnetic	waves	- Poynting	Vector
Flux	of	energy	of	the	wave

Intensity	of	the	wave	is	often	easier	to	deal	with	because	of	extremely	high	
frequencies



Electromagnetic	waves	- Radiation
Larmor	formula:	An	accelerating	point	charge	radiates	total	power

Only	holds	for	small	velocities.
Oscillating	dipole	with	dipole	moment

And	intensity

Falls	off	like							and	the													means	no	radiation	occurs	along	the	dipole	
axis



Electromagnetic	waves	- Radiation
Integrate	over	a	sphere	of	radius	r	gives	the	total	power

Analogous	formula	for	the	magnetic	dipole	radiation

Where										is	the	average	magnetic	dipole	moment.


