Relativity, Mathematics, Statistics, \& Lab Methods to know for the GRE

Special Relativity

Main Concepts and Equations

Main Concepts

Reference Frames
Velocity Addition
Lorentz Transformations
Relativistic collisions
Minkowski diagrams

Reference Frames

"Stationary" Frame:

Experiences time normally
Views objects approaching c as compressing
Fast moving objects appear to experience time more slowly

"Moving" Frame:

At speeds approaching c stationary objects move through time more slowly
Stationary objects appear to stretch and elongate
Within their reference frame moving objects experience time normally.

Velocity Addition

Classically: $\mathrm{v}=v_{1}+v_{2}$
Einstein Velocity addition: $\mathrm{v}=\frac{v_{1}+v_{2}}{1+\left(\frac{v_{1} v_{2}}{c^{2}}\right)}$

Example Problem:

A ship travelling at .8c launches a projectile at 6 c relative to it, what is the speed of the projectile to a stationary
observer?

Basic Relativistic Conversions

Key relationships:
At .5c: $\gamma=1.155$
At $3 / 5 \mathrm{c}: \gamma=1.25$
At $4 / 5 \mathrm{c}: \gamma=1.512$

Time Dilation	Relativistic Mass $m=\gamma m_{0}$ $\Delta t^{\prime}=\gamma \Delta t$
	Relativistic Momentum
Length Contraction	$\mathrm{p}=\gamma m_{0} \vec{v}$
$\Delta x^{\prime}=\frac{\Delta x}{\gamma}$	Relativistic Kinetic Energy
	$E_{k}=(\gamma-1) m_{0} c^{2}$

Lorentz Transformations

Assuming a body moving with a velocity in the x direction:

$t^{\prime}=\gamma\left(t-\frac{v x}{c^{2}}\right)$	$t=\gamma\left(t^{\prime}+\frac{v x^{\prime}}{c^{2}}\right)$
$x^{\prime}=\gamma(x-v t)$	$x=\gamma\left(x^{\prime}+v t^{\prime}\right)$
$y^{\prime}=y$	$y=y^{\prime}$
$z^{\prime}=z$	$z=z^{\prime}$

The Lorentz transformations are derived from the following equation which is always true $c^{2} t^{2}-x^{2}-y^{2}-z^{2}=c^{\prime 2} t^{\prime 2}-x^{\prime 2}-y^{\prime 2}-z^{\prime 2}$

Relativistic Collisions

Key Terms:

$$
\begin{aligned}
& E_{\text {rest }}=\gamma m_{0} c_{2} \\
& \mathrm{p}=\gamma m_{0} \vec{v} \\
& E_{m}=\frac{p}{v} \\
& E_{\text {tot }}=E_{m}+E_{\text {rest }}
\end{aligned}
$$

Example Question:

A particle of mass m is moving at $4 / 5 c$, collides inelastically with another particle of equal mass at rest.

Find its composite mass and velocity.

$$
\begin{aligned}
& p_{m}=\frac{m v}{\sqrt{1-\left(\frac{4}{5}\right)^{2}}}=\frac{4}{3} m \quad E_{m}=\frac{p_{m}}{v}=\frac{\frac{4}{4}}{\frac{3}{5}} m=\frac{5}{3} m \quad E_{t o t / c}=E_{r e s t}+E_{m}=\frac{8}{3} m \\
& v_{c}=\frac{p_{c}}{E_{c}}=\frac{\frac{4}{3} m}{\frac{8}{3} m}=\frac{c}{2}
\end{aligned} \quad m_{c}{ }^{2}=E_{c}{ }^{2}-p_{c}{ }^{2} \quad m_{c}=\frac{4}{\sqrt{3}} m ? l l
$$

Minkowski Diagrams

Two spaceships moving at .5 c are $3 \times 10^{8} \mathrm{~m}$ apart at $\mathrm{t}=-1$, the first one shines a light at a mirror on the back of the second.

Mathematics

Dot \& Cross Product Identities

Dot Product
$\vec{A} \cdot \vec{B}=|A||B| \cos (\theta)$

$$
\vec{A} \cdot \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
$$

Yields a scalar quantity

Cross product
$\vec{A} \times \vec{B}=|A||B| \sin (\theta)$

$=\left(a_{2} b_{3}-a_{3} b_{2}\right) \mathbf{i}+\left(a_{3} b_{1}-a_{1} b_{3}\right) \mathbf{j}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \mathbf{k}$

Yields a vector

Matrices \& Determinants

- $\operatorname{Det}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=a d-b c$

$$
|A|=a \cdot\left|\begin{array}{ll}
e & f \\
h & i
\end{array}\right|-b \cdot\left|\begin{array}{ll}
d & f \\
g & i
\end{array}\right|+c \cdot\left|\begin{array}{ll}
d & e \\
g & h
\end{array}\right|
$$

$$
|A|=a \cdot\left|\begin{array}{ccc}
f & g & h \\
j & k & l \\
n & o & p
\end{array}\right|-b \cdot\left|\begin{array}{ccc}
e & g & h \\
i & k & l \\
m & o & p
\end{array}\right|+c \cdot\left|\begin{array}{ccc}
e & f & h \\
i & j & l \\
m & n & p
\end{array}\right|-d \cdot\left|\begin{array}{ccc}
e & f & g \\
i & j & k \\
m & n & o
\end{array}\right|
$$

Gradient Theorem

$$
\int_{a}^{b}(\vec{\nabla} f) \cdot d \vec{\ell}=f(b)-f(a)
$$

Interpretation: if you were to measure how high a building was by measuring one floor and counting the total floors and adding them, or by simply taking a measurement of the altitude at the top subtracted from that at the bottom, you expect to get the same answer.

Green's Divergence Theorem / Gauss' Law

The divergence measures how much the function spreads out over time

$$
\int(\vec{\nabla} \cdot \overrightarrow{\mathrm{A}}) \mathrm{d} \tau=\oint \overrightarrow{\mathrm{A}} \cdot \mathrm{~d} \overrightarrow{\mathrm{a}}
$$

$$
\int \text { source points inside volume }=\oint \text { flow out of surface }
$$

(a) \& (c) show positive divergence

Stoke's Theorem of Curl (Flux)

Curl over a region or surface is equal to the value of the function at the boundary
Curl measures how much rotation there is in the medium

$$
\int(\vec{\nabla} \times \overrightarrow{\mathrm{A}}) \cdot \mathrm{d} \overrightarrow{\mathrm{a}}=\oint \overrightarrow{\mathrm{A}} \cdot \mathrm{~d} \vec{\ell}
$$

Both images have nonzero curl

Laplacian- divergence of the gradient

- $\boldsymbol{\nabla}^{2} T=\boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} T)=\frac{\partial^{2} T}{\partial^{2} x^{2}}+\frac{\partial^{2} T}{\partial^{2} y^{2}}+\frac{\partial^{2} T}{\partial^{2} z^{2}}$
- $\boldsymbol{\nabla} \times(\boldsymbol{\nabla} T)=0$
- $\boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} \times \vec{V})=0$
- $\boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times \vec{V})=\boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \vec{V})-\boldsymbol{\nabla}^{2} \vec{V}$

Coordinate Systems: Spherical

- Cartesian to Spherical
$-r=\sqrt{x^{2}+y^{2}+z^{2}}$
- $\varphi=\tan ^{-1} \frac{y}{x}$
- $\theta=\cos ^{-1} \frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}$
- Spherical to Cartesian
- $x=r \sin \theta \cos \varphi$
- $y=r \sin \theta \sin \varphi$
$-z=r \cos \theta$
- Integration:
- $d \tau=r^{2} \sin \theta d r d \theta d \varphi$

Coordinate Systems: Cylindrical

- Cartesian to Cylindrical
$-s=\sqrt{x^{2}+y^{2}}$
- $\varphi=\tan ^{-1} \frac{y}{x}$
- Z=Z
- Cylindrical to Cartesian
$-x=s \cos \varphi$
$-y=s \sin \varphi$
$-\mathrm{z}=\mathrm{Z}$
- Integration:
- $d \tau=s d s d \varphi d z$

Trig Identities

$$
\begin{aligned}
& e^{i \theta}=\cos \theta+i \sin \theta \\
& \sin \theta=\frac{1}{2 i}\left(\mathrm{e}^{i \theta}-\mathrm{e}^{-i \theta}\right) \\
& \cos \theta=\frac{1}{2}\left(\mathrm{e}^{i \theta}+\mathrm{e}^{-i \theta}\right) \\
& \sin (\theta \pm \phi)=\sin \theta \cos \phi \pm \cos \theta \sin \phi \\
& \cos (\theta \pm \phi)=\cos \theta \cos \phi \mp \sin \theta \sin \phi \\
& \cos \theta \cos \phi=\frac{1}{2}[\cos (\theta+\phi)+\cos (\theta-\phi)] \\
& \sin \theta \sin \phi=\frac{1}{2}[\cos (\theta-\phi)-\cos (\theta+\phi)] \\
& \sin \theta \cos \phi=\frac{1}{2}[\sin (\theta+\phi)+\sin (\theta-\phi)]
\end{aligned}
$$

Fourier series

- Fourier series are the expansion of a periodic function into sin and cos terms.
- The sin and cos terms are orthogonal, so they do not contribute at the same terms.

$$
\begin{aligned}
& f(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \\
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x & a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x \\
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x & n=1,2,3, \ldots \\
& n=1,2,3, \ldots
\end{aligned}
$$

Binomial distribution

- For situations with discrete binary outcomes (Y / N, probability p of Y)
- The probability of k successes over n trials is
$P(K=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \quad$ where $\binom{n}{k}=\frac{n!}{k!(n-k)!}$
mean $\mu=n p$
standard deviation $\sigma=\sqrt{n p(1-p)}$

Gaussian distribution

- A continuous normalized probability distribution about a mean, shaped like a bell. The normalization constant is in front.

$$
P(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

Poisson distribution

- A discrete probability distribution of events happening at a known rate and independent probability of one another. (ex. radioactive decay)
- If λ is the expected number of events in a given time period, the probability of k events is, with mean λ and standard deviation $\sqrt{\lambda}$.

$$
P(k ; \lambda)=\frac{\lambda^{k} e^{-\lambda}}{k!}
$$

Taylor series

- The approximation of a function $f(x)$ at $x=a$ is represented by

$$
f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{(3)}(a)}{3!}(x-a)^{3}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+\ldots .
$$

Taylor series:

$$
\begin{aligned}
\frac{1}{1-x} & =\frac{1}{1-a}+\frac{x-a}{(1-a)^{2}}+\frac{(x-a)^{2}}{(1-a)^{3}}+\ldots \\
\cos x & =\cos a-\sin a(x-a)-\frac{1}{2} \cos a(x-a)^{2}+\frac{1}{6} \sin a(x-a)^{3}+\ldots \\
e^{x} & =e^{a}\left[1+(x-a)+\frac{1}{2}(x-a)^{2}+\frac{1}{6}(x-a)^{3}+\ldots\right] \\
\ln x & =\ln a+\frac{x-a}{a}-\frac{(x-a)^{2}}{2 a^{2}}+\frac{(x-a)^{3}}{3 a^{3}}-\ldots \\
\sin x & =\sin a+\cos a(x-a)-\frac{1}{2} \sin a(x-a)^{2}-\frac{1}{6} \cos a(x-a)^{3}+\ldots \\
\tan x & =\tan a+\sec ^{2} a(x-a)+\sec ^{2} a \tan a(x-a)^{2}+\sec ^{2} a\left(\sec ^{2} a-\frac{2}{3}\right)(x-a)^{3}+\ldots
\end{aligned}
$$

Lab Methods

Lab Methods

- Dimensional Analysis \rightarrow GRE asked for the slope of a plot in terms of fundamental constant, just look at dimensions of the ratio y / x.
- Log Plots: Never show zero on the axes, A straight line on log-log plot corresponds to $\mathrm{y}=\mathrm{ax}^{\mathrm{b}}$, A straight line on a log-linear plot corresponds to an exponential growth law, $y=C .10^{b x}$

Statistics

- Estimate of spread: Sample Variance

$$
\sigma_{s}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

- Uncertainty : uncertainty of 10% means

- Precise measurement: small variance
- Accurate measurement: Closer to the true value

Error Propagation

$$
\begin{array}{r}
f=a A \quad \sigma_{f}=a \sigma_{A} \\
f=A+B \quad \sigma_{f}=\sqrt{\sigma_{A}^{2}+\sigma_{B}^{2}} \\
f=A B \quad \sigma_{f}=f \sqrt{\left(\frac{\sigma_{A}}{A}\right)^{2}+\left(\frac{\sigma_{B}}{B}\right)^{2}} \\
f=A / B \quad \sigma_{f}=f \sqrt{\left(\frac{\sigma_{A}}{A}\right)^{2}+\left(\frac{\sigma_{B}}{B}\right)^{2}}
\end{array}
$$

Poisson Processes

$$
P(n)=\frac{\lambda^{n} e^{-\lambda}}{n!}
$$

- For large $\mathrm{N} \quad \sigma=\sqrt{N}$
- How rare the process is, if λ is small, likely to observe no events $P(0)=e^{-\lambda}$

Electronics

- Capacitor
- Inductor
- Resistor
- Series
- Parallel

$$
Z=\frac{1}{i \omega C}
$$

$$
Z=i w L
$$

$$
Z=R
$$

$$
Z_{t o t}=Z_{1}+Z_{2}+\cdots Z_{n}
$$

$$
Z_{\text {tot }}^{-1}=Z_{1}^{-1}+Z_{2}^{-1}+\cdots Z_{n}^{-1}
$$

One Inductor and Capacitor Circuit

$$
Z_{L C}=\frac{1}{i \omega C}+i \omega L=\frac{i\left(1-\omega^{2} L C\right)}{\omega C}
$$

- The numerator vanishes when $\omega=\frac{1}{\sqrt{L C}}$, the resonant frequency

Advance Circuit Elements

- Diode: Doesn't follow Ohm's law, current only flows one direction

- Op-amp: Two inputs one output, output proportional to the difference of input voltages

Logic Gates

Or gate $(\mathrm{A}+\mathrm{B})$

- True either A or B is true
- False when both A \&B are false

And gate(A.B)
True if both A \& B are true
False otherwise

- The inputs can be inverted using a NOT gate

- Inverting output of AND and OR gates give NAND and NOR gates
- All basic logic gates can be constructed from the combination of these two gates
- De Morgan's Laws in Boolean Algebra:

$$
\begin{aligned}
& \overline{A \cdot B}=\bar{A}+\bar{B} \\
& \overline{A+B}=\bar{A} \cdot \bar{B}
\end{aligned}
$$

Interactions of Charged Particles with Matter

- Range: Nuclei are stopped faster than the electrons, energy loss/length is much higher for nuclei than for electrons
- Path Shape: Nuclei tend to travel is straight line
- Energy Loss: Nuclei lose energy exclusively due to collisions, rather than by emitting radiation.

Photon Interactions

- Photoabsorption(photoelectric): Photon completely absorbed by an atom, and an electron is emitted.
- Compton Scattering: Photon scatters off an atomic electron, the wider the scattering angle, the more energy it loses to the electron.
- Compton Wavelength $\lambda=\frac{h}{m c}$

Lasers

- The process of photons from decaying excited states being absorbed by other excited states, called stimulated emission, starts a chain reaction, the product of which is an exponentially large number of photons, all with exactly the same frequency and phase, this is laser light.

Types of Lasers

- Solid-state lasers: (Nd-YAG)
- Collisional Gas Lasers: (He-Ne)
- Molecular Gas Lasers: $\left(\mathrm{CO}_{2}\right)$

Interferometer

