Oscillations

Simple Harmonic Oscillator (SHO)

Newton's Second Law: $-k x=m \ddot{x}$

Equations of Motion: $\ddot{x}+\omega_{0}{ }^{2} x=0$, where $\omega_{0}=\sqrt{\frac{k}{m}}$

Solution: $x(t)=A \cos \left(\omega_{0} t+\phi\right)$

Useful Equation: $\omega=2 \pi f=\frac{2 \pi}{T}$

Damped Oscillations

Newton's Second Law:

$$
-k x-b v=m \ddot{x}
$$

Equations of Motion:

$$
\ddot{x}+2 \beta \dot{x}+\omega_{0}^{2} x=0, \text { where } \omega_{0}=\sqrt{\frac{k}{m}} \text { and } \beta=\frac{b}{2 m}
$$

Underdamped: $\beta<\omega_{0}$

Solution:

$$
x(t)=A e^{-\beta t} \cos \left(\omega_{1} t+\phi\right)
$$

Where $\omega_{1}=\sqrt{\omega_{0}{ }^{2}-\beta^{2}}$

Overdamped: $\beta>\omega_{0}$

Solution:

$$
x(t)=e^{-\beta t}\left(A e^{\omega_{2} t}+B e^{-\omega_{2} t}\right)
$$

Where $\omega_{2}=\sqrt{\beta^{2}-\omega_{0}{ }^{2}}$

Will not oscillate

Critically Damped: $\beta=\omega_{0}$

Solution:

$$
x(t)=e^{-\beta t}(A+B t)
$$

Will reach equilibrium in the minimum amount of time.

Damped and Driven Oscillations

Newton's Second Law: $-k x-b \dot{x}+F_{0} \cos \omega t=m \ddot{x}$

Equations of Motion: $\ddot{x}+2 \beta \dot{x}+\omega_{0}{ }^{2} x=G \cos \omega t$, where $G=\frac{F_{0}}{m}$

Solutions: $x(t)=x_{h}(t)+x_{p}(t)$

$$
x_{p}(t)=A_{p} \cos \left(\omega t+\phi_{p}\right), \text { where } A_{p}=\frac{G}{\sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4 \beta^{2} \omega^{2}}}
$$

Resonance

$$
\omega_{R}=\sqrt{\omega_{0}^{2}-2 \beta^{2}}
$$

Quality Factor

$$
Q \equiv \frac{\omega_{R}}{2 \beta}
$$

Electrical Oscillations

RLC Circuit:

$$
\begin{aligned}
\text { Resistor: } V_{R} & =i R \\
\text { Capacitor: } V_{C} & =q / C \\
\text { Inductor: } V_{L} & =L \frac{d i}{d t}
\end{aligned}
$$

EOM:

$$
\begin{aligned}
& L \ddot{q}+R \dot{q}+\frac{1}{C} q=V_{0} \cos \omega t \\
& \vdots \\
& m \ddot{x}+b \dot{x}+k q=F_{0} \cos \omega t
\end{aligned}
$$

Properties of Waves

The Wave Equation

$$
\frac{\partial^{2} f}{\partial t^{2}}=v^{2} \frac{\partial^{2} f}{\partial x^{2}}
$$

Principle of Superposition:
For any solution to the wave equation of the form $f(x \pm v t)$ and $g(x \pm v t)$, the function $(f+g)$ also solves the wave equation

Example: $f(x, t)=\frac{1}{2}(\cos (x+v t)+\cos (x-v t))$

The Wave Equation

$$
\frac{\partial^{2} f}{\partial t^{2}}=v^{2} \frac{\partial^{2} f}{\partial x^{2}}
$$

Principle of Superposition:
For any solution to the wave equation of the form $f(x \pm v t)$ and $g(x \pm v t)$, the function $(f+g)$ also solves the wave equation

Example: $f(x, t)=\frac{1}{2}(\cos (x+v t)+\cos (x-v t))$

Also expressed as $f(x, t)=\cos (x) \cos (v t)$, which is more easily recognized as a standing wave.

Basic Equations

$$
\begin{aligned}
\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{t}) & =\boldsymbol{A} \boldsymbol{\operatorname { c o s }}(\boldsymbol{k} \boldsymbol{x}-\omega t+\delta) \\
\mathrm{f}(\mathrm{x}, \mathrm{t}) & =\operatorname{Re}\left(A e^{i(k x-\omega t)}\right)
\end{aligned}
$$

$A=|A| e^{i \delta}$
A: amplitude k : wavenumber

$$
v=\frac{\omega}{k} \quad k=\frac{2 \pi}{\lambda} \quad \omega=\frac{2 \pi}{T}=2 \pi f
$$

ω : angular frequency
δ : phase
White Book Problem (pg 122): What is the absolute value of the relative phase between two waves described by $\sin (x-v t+\pi / 6)$ and $\cos (x-v t)$?

Basic Equations

$$
\begin{gathered}
\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{t})=A \cos (\boldsymbol{k x}-\omega t+\delta) \\
\mathrm{f}(\mathrm{x}, \mathrm{t})=\operatorname{Re}\left(A e^{i(k x-\omega t)}\right)
\end{gathered}
$$

$A=|A| e^{i \delta}$
A: amplitude k : wavenumber

$$
v=\frac{\omega}{k} \quad k=\frac{2 \pi}{\lambda} \quad \omega=\frac{2 \pi}{T}=2 \pi f
$$

ω : angular frequency
δ : phase
White Book Problem (pg 122): What is the absolute value of the relative phase between two waves described by $\sin (x-v t+\pi / 6)$ and $\cos (x-v t)$?

Answer: Inherent phase shift between sin and \cos is $\frac{\pi}{2}$. Cos is shifted left of sin, so $\pi / 2-\pi / 6=\pi / 3$

Phase and Group Velocity

$$
\begin{gathered}
v_{p}=\frac{\omega}{k} \\
v_{g}=\frac{d \omega}{d k}
\end{gathered}
$$

$\frac{\omega}{k}=\frac{c}{n} \begin{aligned} & \text { (True for EM waves. Note: the wavelength is } \\ & \text { modified, the frequency stays the same) }\end{aligned}$

Red dotted line shows the envelope of wave packet that travels at the group velocity. Individual crests travel at the phase velocity, which can be a function of k if $\omega(k)$. Therefore different wavelengths can have different speeds (dispersion).

Poynting Vector

Using Maxwell's equations, we can find the solutions:

$$
\begin{gathered}
\mathbf{E}(\mathbf{r})=E_{o} e^{i(\boldsymbol{k} \cdot \mathbf{r}-\omega t)} \mathbf{n} \\
\mathbf{B}(\mathbf{r})=\frac{1}{c} E_{o} e^{i(\boldsymbol{k} \cdot \mathbf{r}-\omega \mathrm{t})}(\mathbf{k} \times \mathbf{n})
\end{gathered}
$$

\mathbf{k} is the direction of propagation and \mathbf{n} is the direction of polarization (only for E).

Poynting Vector describes the transport of energy

$$
\begin{gathered}
\mathbf{S}=\frac{1}{\mu_{0}}(\mathbf{E} \times \mathbf{B}) \\
\mathrm{I}=\langle\mathrm{S}\rangle=\frac{1}{2} c \epsilon_{0} \mathrm{E}_{0}^{2}
\end{gathered}
$$

I is the intensity, or the average power per unit area

Malus's Law

$$
\begin{aligned}
& \mathbf{E}(x, t)=\mathrm{E}_{0} \cos (\mathbf{k} \cdot \mathbf{r}-\omega t+\delta) \mathbf{n} \\
& I=I_{0} \cos ^{2} \theta \\
& I=\frac{1}{2} I_{0} \quad \mathrm{MWM}^{\text {anden }} \\
& \text { Vertical filter }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Horizontal filter } \\
& I=0 \quad N \\
& \text { Little or no output }
\end{aligned}
$$

Malus's Law

$$
\begin{gathered}
\mathbf{E}(x, t)=\mathrm{E}_{0} \cos (\mathbf{k} \cdot \mathbf{r}-\omega t+\delta) \mathbf{n} \\
I=I_{0} \cos ^{2} \theta
\end{gathered}
$$

White Book Problem (pg 121): Polarized light with polarization vector $\mathbf{n}=2 \mathbf{x}+3 \mathbf{y}$ is incident on a polarizer oriented at $\mathbf{v}=\mathbf{x}+2 \mathbf{y}$. What is the ratio of the intensity of transmitted light to the initial intensity

Malus's Law

$$
\begin{gathered}
\mathbf{E}(x, t)=\mathrm{E}_{0} \cos (\mathbf{k} \cdot \mathbf{r}-\omega t+\delta) \mathbf{n} \\
I=I_{0} \cos ^{2} \theta
\end{gathered}
$$

White Book Problem (pg 121): Polarized light with polarization vector $\mathbf{n}=2 \mathbf{x}+3 \mathbf{y}$ is incident on a polarizer oriented at $\mathbf{v}=\mathbf{x}+2 \mathbf{y}$. What is the ratio of the intensity of transmitted light to the initial intensity

$$
\frac{I_{t}}{I_{0}}=\frac{\boldsymbol{n} \cdot \boldsymbol{v}}{(|n||v|)^{2}}=\left(\frac{(2+6)}{\sqrt{13} \sqrt{5}}\right)^{2}=\frac{64}{65}
$$

Brewster's Angle

$$
\theta_{B}=\tan ^{-1} \frac{n_{2}}{n_{1}}
$$

Interference and Diffraction

Interference

$$
\begin{gathered}
f(x, t)=A \cos (k x-\omega t) \\
f(x, t)=A \cos (k x-\omega t+\delta)
\end{gathered}
$$

Type of Interference	Phase Shift (δ)	Examples
Constructive	-Odd multiple of π $-2 m \pi \quad m=0,1,2 \ldots$	- Double-slit interference - Single-slit diffraction
Destructive	-Even multiple of π $-(2 m+1) \pi \quad m=0,1,2 \ldots$	- Thin films

Most interference problems on the GRE rely strictly on memory.

Double-Slit Interference

Monochromatic point source (λ)

Maxima

$$
d \sin \theta=m \lambda
$$

Minima

$$
d \sin \theta=\left(m+\frac{1}{2}\right) \lambda
$$

Single-Slit Interference

Monochromatic point source (λ)
Assume L>>d

Minima

$$
\operatorname{asin} \theta=m \lambda
$$

Maxima
no simple formula central max at center

Diffraction by a Circular Aperture

GRE only tests limiting case of the first diffraction minima.

First Circular Diffraction Minima

$$
D \sin \theta=1.22 \lambda
$$

(Left) The resultant diffraction pattern of a circular aperture. (Right) A circular aperture.

Bragg Diffraction

X-rays incident on a crystal lattice. Like double-slit, interfere by pld.

Maxima

$$
d \sin \theta=n \lambda / 2
$$

Geometric Optics

Assorted Topics

Reflection \& Refraction

Lens Equation

$d_{o}=$ object distance
$d_{i}=$ image distance
$f=$ focallength

Lensmaker's Equation

$$
\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)
$$

$f=$ focal length
$R=$ radius of curvature

$$
R_{1}=+
$$

$n=$ index of refraction
$R_{2}=-$

Rayleigh Scattering

for $\lambda » a$
$I \propto I_{0} \lambda^{-4} a^{6}$
$I=$ intensity
$\lambda=$ wavelength
Rayleigh scattering from air molecules

$$
I \rightarrow \frac{1}{\lambda^{4}}
$$

observer \dagger $a=$ particle size

Doppler Effect

$$
f=f_{0}\left(\frac{v+v_{r}}{v-v_{s}}\right)
$$

$f=$ observed frequency
$f_{0}=$ emitted frequency

$v=$ wave velocity
$v_{r}=$ receiver velocity
$v_{s}=$ source velocity

$$
\begin{aligned}
& v_{r} \& v_{s}=+, \mathrm{s} \rightarrow \mathrm{r} \\
& v_{r} \& v_{s}=-, \mathrm{s} \longleftrightarrow \mathrm{r}
\end{aligned}
$$

Standing Sound Waves

