Oscillations

Simple Harmonic Oscillator (SHO)

Newton's Second Law: $-kx = m\ddot{x}$

Equations of Motion:
$$\ddot{x} + \omega_0^2 x = 0$$
, where $\omega_0 = \sqrt{\frac{k}{m}}$

Solution: $x(t) = A \cos(\omega_0 t + \phi)$

Useful Equation:
$$\omega = 2\pi f = \frac{2\pi}{T}$$

Damped Oscillations

Newton's Second Law:

$$-kx - bv = m\ddot{x}$$

Equations of Motion:

$$\ddot{x} + 2\beta \dot{x} + \omega_0^2 x = 0$$
, where $\omega_0 = \sqrt{\frac{k}{m}}$ and $\beta = \frac{b}{2m}$

Underdamped: $\beta < \omega_0$

Solution:

$$x(t) = Ae^{-\beta t}\cos(\omega_1 t + \phi)$$

Where
$$\omega_1 = \sqrt{\omega_0^2 - \beta^2}$$

Overdamped: $\beta > \omega_0$

Solution:

$$x(t) = e^{-\beta t} (A e^{\omega_2 t} + B e^{-\omega_2 t})$$

Where
$$\omega_2 = \sqrt{\beta^2 - \omega_0^2}$$

Will not oscillate

Critically Damped: $\beta = \omega_0$

Solution:

$$x(t) = e^{-\beta t} (A + Bt)$$

Will reach equilibrium in the minimum amount of time.

Damped and Driven Oscillations

Newton's Second Law: $-kx - b\dot{x} + F_0 \cos \omega t = m\ddot{x}$

Equations of Motion:
$$\ddot{x} + 2\beta \dot{x} + \omega_0^2 x = G \cos \omega t$$
, where $G = \frac{F_0}{m}$

Solutions: $x(t) = x_h(t) + x_p(t)$

$$x_p(t) = A_p \cos(\omega t + \phi_p)$$
, where $A_p = \frac{G}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\beta^2 \omega^2}}$

Resonance

$$\omega_R = \sqrt{\omega_0^2 - 2\beta^2}$$

Quality Factor

$$Q \equiv \frac{\omega_R}{2\beta}$$

Electrical Oscillations

RLC Circuit:

Resistor: $V_R = iR$ Capacitor: $V_C = q/C$ Inductor: $V_L = L \frac{di}{dt}$ $L\ddot{q} + R\dot{q} + \frac{1}{C}q = V_0 \cos \omega t$ $m\ddot{x} + b\dot{x} + kq = F_0 \cos \omega t$

EOM:

Properties of Waves

The Wave Equation

Principle of Superposition:

For any solution to the wave equation of the form $f(x \pm vt)$ and $g(x \pm vt)$, the function (*f*+*g*) also solves the wave equation

Example: $f(x,t) = \frac{1}{2}(\cos(x + vt) + \cos(x - vt))$

The Wave Equation

Principle of Superposition:

For any solution to the wave equation of the form $f(x \pm vt)$ and $g(x \pm vt)$, the function (*f*+*g*) also solves the wave equation

Example:
$$f(x,t) = \frac{1}{2}(\cos(x + vt) + \cos(x - vt))$$

Also expressed as f(x,t) = cos(x) cos(vt), which is more easily recognized as a standing wave.

Basic Equations

$$f(x,t) = A \cos(kx - \omega t + \delta)$$
$$f(x,t) = \operatorname{Re}(A e^{i(kx - \omega t)})$$

 $A = |A|e^{i\delta}$

A: amplitude k: wavenumber ω: angular frequency δ: phase

$$v = \frac{\omega}{k}$$
 $k = \frac{2\pi}{\lambda}$ $\omega = \frac{2\pi}{T} = 2\pi f$

White Book Problem (pg 122): What is the absolute value of the relative phase between two waves described by $sin(x-vt+\pi/6)$ and cos(x-vt)?

Basic Equations

$$f(x,t) = A \cos(kx - \omega t + \delta)$$
$$f(x,t) = \operatorname{Re}(A e^{i(kx - \omega t)})$$

 $A = |A|e^{i\delta}$

A: amplitude k: wavenumber ω: angular frequency δ: phase

$$v = \frac{\omega}{k}$$
 $k = \frac{2\pi}{\lambda}$ $\omega = \frac{2\pi}{T} = 2\pi f$

White Book Problem (pg 122): What is the absolute value of the relative phase between two waves described by $sin(x-vt+\pi/6)$ and cos(x-vt)?

Answer: Inherent phase shift between sin and cos is $\frac{\pi}{2}$. Cos is shifted left of sin, so $\pi/2 - \pi/6 = \pi/3$

Phase and Group Velocity

Red dotted line shows the envelope of wave packet that travels at the group velocity. Individual crests travel at the phase velocity, which can be a function of k if $\omega(k)$. Therefore different wavelengths can have different speeds (dispersion).

Poynting Vector

Using Maxwell's equations, we can find the solutions:

$$\mathbf{E}(\mathbf{r}) = E_o \, \boldsymbol{e}^{i \, (\boldsymbol{k} \cdot \mathbf{r} - \omega \mathbf{t})} \, \mathbf{n}$$

$$\mathbf{B}(\mathbf{r}) = \frac{1}{c} E_o e^{i (\mathbf{k} \cdot \mathbf{r} - \omega t)} (\mathbf{k} \times \mathbf{n})$$

k is the direction of propagation and **n** is the direction of polarization (only for **E**).

Poynting Vector describes the transport of energy

$$\mathbf{S} = \frac{1}{\mu_0} \left(\mathbf{E} \times \mathbf{B} \right)$$

$$I = \langle S \rangle = \frac{1}{2} c \epsilon_0 E_0^2$$

I is the *intensity, or the average* power per unit area

Malus's Law

$$\mathbf{E}(x,t) = \mathbf{E}_0 \cos(\mathbf{k} \cdot \mathbf{r} - \omega t + \delta)\mathbf{n}$$
$$I = I_0 \cos^2\theta$$

Vertical filter

Horizontal filter

Vertical filter and horizontal filter

Malus's Law

$$\mathbf{E}(x,t) = \mathbf{E}_0 \cos(\mathbf{k} \cdot \mathbf{r} - \omega t + \delta)\mathbf{n}$$
$$I = I_0 \cos^2\theta$$

White Book Problem (pg 121): Polarized light with polarization vector n=2x+3y is incident on a polarizer oriented at v=x+2y. What is the ratio of the intensity of transmitted light to the initial intensity

Malus's Law

$$\mathbf{E}(x,t) = \mathbf{E}_0 \cos(\mathbf{k} \cdot \mathbf{r} - \omega t + \delta)\mathbf{n}$$
$$I = I_0 \cos^2\theta$$

White Book Problem (pg 121): Polarized light with polarization vector n=2x+3y is incident on a polarizer oriented at v=x+2y. What is the ratio of the intensity of transmitted light to the initial intensity

$$\frac{I_t}{I_0} = \frac{\mathbf{n} \cdot \mathbf{v}}{(|n||v|)^2} = \left(\frac{(2+6)}{\sqrt{13}\sqrt{5}}\right)^2 = \frac{64}{65}$$

Brewster's Angle

Interference and Diffraction

Interference

$$f(x,t) = Acos(kx - \omega t)$$

$$f(x,t) = Acos(kx - \omega t + \delta)$$

Type of Interference	Phase Shift (δ)	Examples
Constructive	-Odd multiple of π - 2mπ m=0,1,2	 Double-slit interference Single-slit diffraction
Destructive	-Even multiple of π - (2m+1) π m=0,1,2	- Thin films

Most interference problems on the GRE rely strictly on memory.

Double-Slit Interference

Monochromatic point source (λ)

Maxima

 $dsin\theta = m\lambda$

Minima

$$dsin\theta = (m + \frac{1}{2})\lambda$$

Single-Slit Interference

Monochromatic point source (λ) Assume *L>>d*

Minima

 $asin\theta = m\lambda$

Maxima

no simple formula central max at center

Diffraction by a Circular Aperture

GRE only tests limiting case of the first diffraction minima.

First Circular Diffraction Minima

 $Dsin\theta = 1.22\lambda$

(Left) The resultant diffraction pattern of a circular aperture. (Right) A circular aperture.

Bragg Diffraction

X-rays incident on a crystal lattice. Like double-slit, interfere by pld.

Maxima

$$dsin\theta = n\lambda/2$$

Geometric Optics

Assorted Topics

Lens Equation

 d_o = object distance d_i = image distance f = focal length

Lensmaker's Equation

Doppler Effect

$$f = f_0 \left(\frac{v + v_r}{v - v_s} \right)$$

f = observed frequency f_0 = emitted frequency v = wave velocity v_r = receiver velocity v_{s} = source velocity

$$\sim \sim \sim \sim$$

$$v_r \& v_s = +, s \rightarrow \leftarrow r$$

 $v_r \& v_s = -, s \leftarrow r$

Standing Sound Waves

