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Formalism

W(x,t) Probability function of position and time,
defines the probability of a particle
occupying a position at a given time

i The complex conjugate (replace i with —i)

MNormalization: the probability of finding a

particle that exists somewhere, across all
e 5 possible somewheres, is 1.

f [P, )2dx = 1 Y may need to be normalized.

- Y goes to 0 at positive & negative infinity.

J-m*-P*(x, ¥, t)dx=1

A An operator: a “rule” that acts on a
function, in QM it acts on ¥

d
ex.— 2%
dx

(4)

- i Expected value of A
f W (x, t) AV (x, t)dx = (4) xpected value o



If a function f(x) operated on by operator
returns c*f(x), then f(x) is an eigenfunction of
that operator, with eigenvalue c.

_ Msh | Englsh

J-mf(xj* (ﬁg(x)) dy = J-m (ﬁf(x))*g{x)dx Definition of a Hermitian operator

= . Eigenfunctions corresponding to different
f_mf{x} gx)dx =0 eigenvalues are orthogonal.
=% Position and momentum operators
5 — —ih d All other physical observable operators can be
hi=k dx derived from these, except for spin.

i : Cn is the probability coefficient of the function
= J:mfn(x] b being in a specific state

A) = Z 1 2 The expectation value of A can be calculated if
Wi il the eigenvalues and coefficients are known
k



Dirac delta notation

» aka bra(c)ket notation
* |B >is “B ket”
« < B|is “bra A”
* (a|b):= (bla)"
* “A dagger”, which is the complex conjugate of the operator A
o If (a|Ab}' = (ATb| ) is true, then A is Hermitian

(flg):=J__ f(x)" g(x)dx



Schrodinger equation

e ~ Schrodinger equation, all solutions are energy
ma Wix t)y=HY(x.t)=E . W(x. 1) ot

e T A The Hamiltonian operator

By : : ;
W) = e h 1 (¥) General solution to the Schrodinger equation



What to know about the
wavefunction

* ), for different eigenvalues are orthogonal (their integral equals
zero)

e 1) is continuous, and the derivative usually also so

* ), is the ground state and has no nodes (place where the
wavefunction vanishes)

* Even functions are symmetric about a vertical axis — varies by ¢,



Operators

e ...do not commute

* They are computed left to right, and can be used together
[A,B] =AB - BA

* [X,p | = ih is the most important one

* Operators are involved in uncertainty, as in the Heisenberg
uncertainty principle

Ox0p = g, approximated by AxAp = h and AEAt = h
* Also, g,% = (A?) — (A)?



Quantum Harmonic Oscillator
1D
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Horizontal axis is position, and the vertical axis is the real part (blue) or
imaginary part (red) of the wavefunction. C, D, E, F, but not G, H, are
energy eigenstates. H is acoherent state—a quantum state that
approximates the classical trajectory.




Quantum Harmonic Oscillator 3D
UN(Z, Y, 2) = Yn, ()0, (Y)Uns(2); En = (N + %) hw with N = ny + ns + ns.

(ny,n2,n3) = (1,0,0), (0,1,0), (0,0,1)



Infinite Square Well
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Horizontal axis is position, and the vertical axis is the real part (blue)
and imaginary part (red) of the wavefunction. The states (B,C,D) are
energy eigenstates, but (E,F) are not.



Free Particle

Re[¥(x]]

Increasing amounts of wavepacket localization, meaning the particle
becomes more localized.



Delta Function
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Finite Square Well

2 2 A S e
H = —ii +V(z), V(z)= { [T‘fnf a<z<a
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Wave function inside the well turning to decaying exponentials outside the well.



Scattering States: Reflection/Transmission
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Three Dimensions

* Momentum Operator:

= —ihV
_of, of . of
V—a?ﬁ"‘@y‘f'azz



Hamiltonian in 3D




Ditferent Coordinates Commute with
Each Other

2,02] = |9.5,] = [2,p;] = in



Spherical Wave Function

* Spherical Wave function: Product of angular and
radial part

Y(r) =R()Y(6, p)

* Separate into radial and angular part and normalize
each piece separately

2T T
f f Y(0,d)|?singd8ddp =1
o Jo

f IR(r)|?r?dr =1
0



Angular Momentum

L = #Xp
L:c = YDz — ZDy
L, = Zp, — Xp,



Something to Remember For GRE

[Lx* Ly| = ih L]



Spherical Coordinates



Eigenfunction and Eigenvalues
Y (6, ¢)
L, Y™ =mhY"
L2Y™ = I(1 + 1)h2Y™

(ml)eZ,l=0
m=Ll-11l-2,....,-1



Some Facts

e Orthonormal:
2T AT /
f f Y *Y] sin6dodp =356,
0 0

{[}ifmq!:m’
57?1’."1’1-": . !
lifm=m

* The ¢ dependence 1s always in the form ,imé

* Dependence of 0 1s complicated and will be
provided



Hydrogen Atom

e Hamiltonian:

—fr2 e?
= —V°
2 U 4 TEYT
 Bohr Radius
4 ey M2




Energy States

* Ground state energy (Hydrogen):

hz
—E, = = 13.6 eV
1 2 pua?
* n state energy:
? 1
—E, = * n=123 .

2ua® n2



Rydberg’s Formula




Usetul for GRE



Spin

Spin is a characteristic of a particle, and doesn’t change!

Spin operators obey same commutation relations as angular
momentum operators.

Spin can either be an integer or half-integer.

For GRE, only really need to know spin-%

Adding spins is not trivial:

For system of two particles (spin s and spin s’)

Stor =S +58',s+s'"—1,s+s5"—2,..,|s—5]






Spin and the wavefunction

e Can think of total wavefunction as a product
of a spatial wavefunction and a spin
wavefunction

e Spin operators always commute with spatial
operators

* |f particle has spin-0, it only has a spatial
wavefuntion

Note: the Hamiltonian can act on both the spin
and spatial wavefunctions!



Bosons and fermions
Bosons  emions

Integer spin Half-integer spin
Symmetric wavefunctions Antisymmetric wavefunctions
Photons, alpha particles, deuterons Electrons, muons, protons, neutrons

Pauli exclusion principle:
* no 2 identical fermions can occupy the same quantum state
For identical particles...

* symmetric wavefunctions: D (xq,x7) = P(x3,%)
* antisymmetric wavefunctions: ®(x;,x,) = —®(x5,x;)



Approximation Methods in QM

Variation principle

e Approx. ground state E of system when Hamiltonian known

» For a normalized wavefunction: (y|H|y) > E,.

* Use trial wavefunction with adjustable parameter, calculate
and minimize with respect to parameter

Adiabatic theorem

* For particle in nth eigenstate of H, if H is slowly changed to
H’, then particle will end up in the corresponding eigenstate

Note: will not have to apply variation principle on GRE!!



Time-independent perturbation theory
H = Hy+ \H'

* A<<1, know energies and eigenfunctions of HO, so can
compute corrections

* First-order: En — ES + )\ <,¢52|Hrl¢g>

 Second-order:

o H
En:E2+AZZIUHL| 'h} )I

— Diagonalize the perturbatlon in the subspace of
degenerate states!

g — (Hea Hap) — ((ValH'[Ya) (ol H'|ths)
degen nga Hf;b il (’tf)b|Hfl'I;i?u) ('tf)b’[r|?;‘i?b>



Atomic Review

Bohr Model

o Electrons move in classical circular orbits, called energy shells or energy levels.
o  Angular Momentum - L=n*h where n=1,2,3...

o Electrons do not radiate as they move around the nucleus.
m Classically the electron would radiate and spiral into the proton.

Angular Momentum n=3

e L=mvr

n=1 ¢
Number ||5}{mhol|| Possible Values | ¢ +Ze AE - hf
Frincipal Quantum Mumber n 1, 2_, 3_, 4, p——
Angular Momentum Quantum Mumber| ¢ ||0,1,2,3, ..., (H — 1}
Magnetic Guantum Mumber my —f, A —1, []_. 1, e ,f
Spin Quanturn Mumber mg —|—1f2_. —1/2




Perturbations to the Hydrogen Atom

Fine Structure

o Replacing the electron KE term in the Hamiltonian with the correct relativistic

form.
o Spin-Orbit coupling between electron’s orbital angular momentum and its spin.

Lamb Shift
o Splits the 2s and 2 level with j=7%.
Spin-Spin Coupling

o Ground state of hydrogen splits.
o Depends on spins of e and p.

Useful Calculation Tip

o J=(L+S)
=L2+2L - §+8?
o L»S=14(J2L%-S?)




Shell Model and Electronic Notation

Orbitals Number Symbol Possible Values
6 s5/=0 Frincipal Cluantum Mumber n 1: 2_, 3_, 4, —
o p—o/=1 Angular Momentum Quanturm Number)|  f D 1 2 3 E:R — 1}
o d—/=2 Magnetic Quantum Mumber Ty —F —1 [] 1 f
o f—/=3 Spin Quantum Number Ms —|—1}"2 —1!2

L=nh L2=I(1+1)h? |L|=hV2
15228 22p % 3s 2. 3p 7452 3d 0 4p . 5s 2.4d °5p 2 652 4f 22 5d 0bp & 752 Bf - 6d 30.7p 7

30

Shells fill in order, preferring smaller values of | until Argon.

Noble gases are chemically inert because they have totally filled electron shells.

o Alkali metals have one “extra” electron
o Halogens have one fewer electron



Stark effect in hydrogen

Stark Effect

§ " cecveiodmm o
Splitting of degenerate energy levels caused by E-field.
Change in Hamiltonian in a uniform electron field is given by,
o AH=eEllr
There is no change in the ground state energy
First states to show a first-order shift are n=2 states.
o States with m=x1 are unaffected, but 2s and 2p states with m=0 are split.

Energy splitting must be given of the form,

o AE=ke|E|d , where d is some length (usually d=a.), and k is an undetermined
constant.



Zeeman Effect

e Splitting of degenerate energy levels caused by B-field.

e Change in Hamiltonian in a magnetic field is given by,
o AH=(e/2m)*(L+2S)-B
o e/2m is the electron’s classical gyromagnetic ratio.
o 2 in front of spin operator is because the quantum
gyromagnetic ratio is twice the classical value.
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Selection Rules

e No transitions occur unless,
o Am=x1o0r0
m Conservation of the z-component of angular momentum
m Photon Spin=1—/=-h, 0, h
o A/ =41

e Decay Pattern Example:
o 3s—*2p—1s



Blackbody Radiation
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visible | infrared
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AmaT = 2.9x1073 K -m

Wavelength A (um)



