Visual and Spatial Imagery/
Knowledge

- Can you imagine an elephant pushing a yellow VW being steered by a chimpanzee?
- Can you get from Sturges to Welles without going outside?
- Which direction is the Bronze Bear facing (N, S, E, W)?
- Alluded to ability/system earlier:
 - Baddeley's Visuo-Spatial Sketched

Questions

- What are the characteristics of visual imagery
- (how do we work with mental images)
- What is the form of the representation?
- Is visual imagery similar to actually seeing?
- Is visual imagery distinct from verbal thought?
- Is visual imagery different from spatial imagery?

Representations

- Representation
 - Internal model of outside world (referent)
 - Preserves/codes the key (useful) features of referent
 - Represented features can be used to guide behavior

Problem

- How can we study something so "subjective"
- How to explore the characteristics of someone's visual imagery?
- Problems with Introspection
 - No way to confirm or compare

How are images represented

- Analog vs. Propositional representation
- Representation -- internal "knowledge" of referent
- Analog representation
 - Mimics structural characteristics of referent
 - Continuous
 - Reference frame (for relative positions)
- Propositional representation
 - Assertions possessing truth value
 - Anderson's ACT

Propositional Representation
- rocking chair left of couch
- candy in candy dish
- rug below coffee table
- window behind couch

Analog Representation
- rocking chair left of couch
- candy in candy dish
- rug below coffee table
- window behind couch
Processing Spatial Information

- Different types of representations useful (easier) in different situations
- Analog (representing space with space)
 - Easy to measure/estimate distance
 - Easy to determine relative direction
- Propositional (representing space verbally)
 - Easy to create directions
 - Easy to communicate directions
 - Easy to refer to locations

Shepard and Metzler (1971) and Cooper & Shepard (1973)

- How are mental images represented?
- Studied the manipulation of mental images
 - Mental rotation
- Ask subjects to manipulate images
 - Measured time required to do so

Task

- Drawings of 3-D objects
 - Decide if same or different
 - A) frontal plane (S)
 - B) depth (S)
 - C) (D)
- Manipulated amount of rotation

Results

- Measured time to make judgment
- RT to make judgment -- degree of rotation
 - Same result if you physically rotated at constant speed

Conclusions

- Evidence for analog representations
 - (manipulate continuously)

Kosslyn, Ball, & Reiser (1978)

- Mental map experiment
- Map
 - 7 landmarks
Procedure

- studied map -- reproduce
- task -- given a landmark
- 5 seconds later given a 2nd landmark
- scan from one to the other
- press button when reach 2nd landmark

Results

- Mental scanning time - function of "distance"
- Supports analog representation
 - longer "physical distance" = longer mental distance

Maps and Navigation

- Can acquire different types of information about an environment
 - Survey knowledge - bird's eye view (map)
 - Route knowledge - how to navigate between locations

Route Knowledge

- Navigation from one landmark to another
 - "turn left when you get to the church"
 - remembering which way to turn at a given landmark without having to see it
 - egp-centered frame of reference
 - obtained through navigation of route

Survey Knowledge

- internal cognitive map (analog representation)
- world-centered reference frame
- can be abstracted from route knowledge or a map
Route vs. Survey Knowledge

- Route vs. Survey knowledge
 - Route knowledge supports tasks requiring an ego-centered perspective — pointing directions, calculating time to reach destination
 - Survey knowledge supports tasks requiring a world-centered perspective — judging absolute location, direction, or distance

Acquiring Knowledge

- With training, route knowledge can lead to survey knowledge, however...
- Survey knowledge does not easily lead to route knowledge: it is difficult to obtain route knowledge without actual navigation
- With irregular layouts — learning through navigation may distort survey representation

Visual imagery

- Similar to visual perception?
- Kosslyn research -- scanning times suggest similarity

Resolution effects

- Kosslyn (1975)
 - resolution effects with mental images?
- one experiment:
 - imagine an elephant sitting next to a rabbit
 - does the rabbit have whiskers?
 - imagine a rabbit sitting next to a fly
 - does the rabbit have eyebrows?
 - Which image of a rabbit was larger?
 - Which had more detail?
Results

- Speed with which people made judgments about an image depended on the size of the image
 - larger images -- higher resolution -- more details
 - follow-up experiment -- switched sizes
 - (to rule out that larger animals = more detail)
 - imagine a monster fly next to a pygmy elephant
 - results again consistent with size of image

Symbolic Distance Effect

- In vision
 - making a comparison
 - RT increases with "difference"
 - ex: RT to compare two angles -- which is larger
 - fast to compare very distinct angles
 - slower to compare similar lines

Paivio (1978) -- Symbolic Distance Effect in Images

- Had people comparing imagined angles
 - Decide which one was larger
 - Did this by having people imagine clocks
 - compare angles between hands
 - ex: 4:40 vs. 9:55
 - ex: 2:20 vs. 11:30 -- easy
 - ex: 3:10 vs. 11:05 -- harder
 - Found symbolic distance effect for images

Similarity between imagery and perception

- How might we explain this?
 - Same mechanisms?
 - create a visual image
 - activate parts of brain used for visual perception?
 - Interact with (e.g., scan)
 - using same processes used to scan actual image?
 - Image -- top-down activation of visual areas
 - As opposed to bottom-up

Evidence that imagery uses "perceptual machinery"

- Imagery should activate similar regions of brain
 - Kosslyn et al (1993) -- PET evidence
 - Subjects created visual images -- PET scanner
 - imagine a block letter within a 4x5 grid vs. actually viewing one
 - make judgments does mark fall on or off letter
Results
- Activity found in visual cortex
- Similar pattern to what was found when subjects performed "visual version"
- Activity higher during imagery
 - (imagery harder than perception?)

Roland & Friberg (1985)
- Activation - specific to modality
- PET study
- Auditory imagery task (imagine a tune)
- Visual imagery task (walk in your neighborhood)
- Results:
 - Auditory imagery
 - Activation of auditory cortex / not visual cortex
 - Visual imagery
 - Activation of visual cortex / not auditory cortex

Imagery can "prime" detectors
- Letter identification task -- more accurate faster if just "saw" letter
 - repetition priming -- warm up the detectors
 - (implicit memory)
- Farah, Peronnet, Gonon, & Girard (1988)
- Similar experiments with imagery
 - imagine a letter -- identify a degraded letter
 - better when they matched
 - (imagine H -- presented with H)

Other evidence -- perception and imagery differ
- Chambers & Reisberg (1985) ambiguous figures

Chambers & Reisberg Findings
- ambiguous figures -- can store only one interpretation
- shown briefly -- can’t reinterpret based on image
- draw from memory -- now can reinterpret
- Visual images -- not as flexible as visual perception
- Some counter evidence (book)

Difficulty may be in changing reference frame
- changing reference frame
 - e.g., change top to side, front to back, etc.
Summary

- Imagery and perception
 - Similar form of representation
 - Interaction with / manipulation -- similar phenomenon
 - Likely involve common brain mechanisms

- But:
 - May differ in terms of ability to reinterpret
 - Images -- interpretation attached

Images: Visual or Spatial Representations?

- Spatial
 - Not tied to specific modality
 - Abstract representation of spatial relations
 - Analog in nature
- Visual
 - Representation based on visual encoding
 - Representing appearance
 - Uses visual system

Evidence for Spatial Representation

- Compare performance:
 - congenitally blind subjects and sighted subjects
 - No visual representations
 - Spatial representations
- Kerr (1983)
 - Replicated Kosslyn et al’s “Island” scanning exp.
 - Blind subjects -- learned layouts by feel
 - Results -- replicated original results
 - RT increased with “scanned” distance
- Marmor & Zabeck (1976) -- same results as sighted for mental rotation

Both visual and spatial imagery?

- How to determine if these are separate processes?
- Brooks (1968) -- interference task
 - Verbal vs. visuo--spatial task
 - Determine if visual tasks interfere with spatial tasks
 - And vice versa

Baddeley & Lieberman (1980)

- used matrix filling task
- Imagine 4x4 matrix
 - Second row, second column -- starting point

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

Two types of interference tasks

- Spatial vs. Visual
 - Spatial -- Patterned hand movement (eyes closed)
 - Visual -- brightness discrimination
Spatial task produced interference

Visual task did not

Evidence for spatial imagery
(as well as visual imagery)

Cognitive Neuropsychology

- Brain damage -- lose one function & spare others
 - patient LH -- auto accident
 - visual agnosia -- impaired at recognizing objects
 - gave a battery of imagery tasks

Visual imagery tasks:

- animal tails (Does a rat have a long tail)
- size comparison (which is larger, a donkey or a horse)
- state shapes (Is the shape of Illinois more similar to Indiana or Colorado)
Spatial imagery tasks:
- letter rotation (if you take capital N and rotate it 90° clockwise -- letter?)
- 3-D rotation (Shephard & Metzler task)
- Mental scanning (Kosslyn map task)
- Matrix memory
- Matrix memory (what we just did)

LH
- Visual imagery tasks -- performance decrement
- Spatial imagery tasks -- normal to above normal performance

Picture superiority effect
- Better memory for pictures than for words
- Why?
- Paivio -- Dual Code Hypothesis
- How do we store visual information in memory?
 - Use verbal code (propositional)
 - Use non-verbal code (analog)
- Picture superiority effect
 - Picture -- stored in both codes
 - Words -- typically stored in verbal code

Other Evidence
- Better memory for concrete words than abstract words
 - concrete: pencil, cup, chimney, radiator, tree, mountain, table, mailbox, guitar
 - abstract: month, virtue, skill, hunger, idea, mistake, compliment, theory, event
- Why would a Dual-Code theory predict this?
 - Concrete -- imageable
 - activate both verbal and nonverbal codes
 - more retrieval paths / cues

Propositional vs. Analog (Part II)
- Began this section -- evidence for analog representation
- Evidence -- We have analog representations
- Rule out propositional representations?
 - No
- Paivio’s dual coding hypothesis
 - Have both at our disposal

Evidence for propositional representation
- Hierarchical representation of space
 - Reno east of Los Angeles?
 - Montreal north of Seattle?
 - Rochester south of Boston?
- Book -- study by Stevens and Coupe (1978)
Stevens & Coup (1978)
- Subjects learned maps with:
 - Counties (superordinate)
 - Towns (subordinate)
- Task: judge relative locations of towns x & y
 - east of / south of / etc.
- Results
 - East-West judgments better with left maps
 - North-South judgments better with right maps

Hemispheric Specialization
- Left hemisphere
 - Categorical representations
 - (propositional)
 - Above, below, right, left
- Right hemisphere
 - Continuous representations
 - (analog)
 - Relative distance encoded

Kosslyn (1989)
- Asked people to make
 - Categorical (propositional) judgments
 - Or
 - Continuous (analog) judgments
- Used lateralized stimulus presentations

Laeng (1994)
- Lateralized Damage
 - stroke
- Pictures (same or diff)
 - Left Hemisphere Patients
 - More target confusions with categorical transformation
 - Right Hemisphere Patients
 - More target confusions with coordinate transformation

Lateralized stimuli
- Right visual field (RVF)
 - Projects to left hemisphere (LH)
- Left visual field (LVF)
 - Projects to right hemisphere (RH)

Tasks
- Categorical
 - Dot above or below line
- Coordinate
 - Dot near or far from line
- Note -- identical stimuli

Laeng (1994)
- Lateralized Damage
 - Stroke
- Pictures (same or diff)
 - Left Hemisphere Patients
 - More target confusions with categorical transformation
 - Right Hemisphere Patients
 - More target confusions with coordinate transformation
End Spatial Knowledge