Oscillations Worksheet

 ****** Use a pencil! *****Name: \qquad Partner: \qquad

1) Pendulum: Amplitude Dependence. Make 15 measurements of T vs θ_{0}, using $L \approx 50 \mathrm{~cm}$, and a metal bob. Your 15 starting angles should be near the following points: $2^{\circ}, 3^{\circ}, 4^{\circ}, 5^{\circ}, 7^{\circ}, 9^{\circ}, 12^{\circ}, 15^{\circ}, 20^{\circ}, 25^{\circ}$, $30^{\circ}, 35^{\circ}, 40^{\circ}, 50^{\circ}$, and 55°. Use a stopwatch to determine the total time for 5 periods, and then determine the period by dividing by 5 . Plot T vs θ_{0}. We expected T to be constant, but it clearly is not. Based on the appearance of the plot, have Excel do a parabolic best-fit line for T vs θ_{0} (in radians).
a. Write the equation:

$$
T=(\quad \pm \quad) \mathrm{s} \cdot \theta_{0}^{2}+(\quad \pm \quad) \mathrm{s} \cdot \theta_{0}+(\quad \pm) \mathrm{s}
$$

b. Comment on the extent to which this result is constant. Did you include the origin on your vertical scale?
c. According to your equation, what is T_{0} when $\theta_{0}=0^{\circ}$? \qquad
d. According to your equation, what is θ_{0} (in degrees) when T is $1.01 \times T_{0}$?
e. Over what range of starting angles could you assume the period to be reasonably constant (meaning, not varying by more than about 1%)?
2) Pendulum: Length Dependence. Make 10 measurements of T vs. L, all using $\theta_{0}=10^{\circ}$, and a metal bob. L should vary between 10 cm and around 100 cm . You may not cut any string, so think before you begin! We expect that $T^{2}=k^{2} \frac{L}{g}$, so plot T^{2} vs. L.
a. Using this result, what is your value of k / π ?

$$
k / \pi=\quad \pm
$$

b. How well does this agree with the expected result? \qquad
3) Spring: Hooke's Law. From a spring, gently hang masses varying from 50 through 500 g in 50 g increments. Do not let them oscillate. Measure the final position y of the bottom hook of the spring for each mass, and then plot $(m \cdot g)$ vs. y. Hint: this k has nothing to do with k for the pendulum.
a. What is the spring constant k ? \qquad $k=$ \pm N / m
4) Spring: Simple Harmonic Motion. Using a spring, gently hang masses varying from 50 through 500 g in 50 g increments. Cause each to oscillate with an amplitude of no more than 6 cm . Use a stopwatch to determine the total time for 10 periods, and then determine the period by dividing by 10 . Plot T^{2} vs. m. Hint: $\omega^{2}=k / m$, and $\omega=2 \pi / T$
a. What is the spring constant k ? \qquad $k=$ \pm N / m

