Quiz \#1

Name: \qquad
The figure shows a string at one time. The ends of a piece of string are glued to two facing walls. The tension in the string is known to be 10 N . The distance between the two
 walls is 0.4 m .

1. How many total nodes are present at this time?

$$
\#=
$$

2. How many anti-nodes are shown? $n=$ \qquad
3. What is the wavelength at the time shown?
$\lambda=$ m
4. How are wave velocity v, frequency f, and wavelength λ symbolically related?
\qquad
5. The mass of the string per unit length (μ) can be found from the tension and the velocity. Write this symbolic equation for μ :

$$
\mu=
$$

6. The frequency of this wave is $f=160 \mathrm{~Hz}$. What is the wave speed?

$$
v=\quad \mathrm{m} / \mathrm{s}
$$

7. What is the mass of the string per unit length?

$$
\mu=\quad \mathrm{kg} / \mathrm{m}
$$

8. Using your value of μ, and assuming that the length of the string is the same as the distance between the two walls, find the mass of the string:

$$
\underline{m}=\quad \mathrm{kg}
$$

9. If μ and λ are known constants, and you plot tension vs. f^{2}, what is the symbolic slope of the resulting line?

$$
\text { slope }=
$$

10. Since you have numbers for μ and λ above, use them to determine the numeric slope corresponding to question 9 .

$$
\text { slope }=\quad \mathrm{kg} \cdot \mathrm{~m}
$$

