Name:_____

Date of Lab:_____

Partner:_____

Lab 1: Waves on a String

Parts 1 & 2: Basic Measurements for $n = 3$, $m = 100$ g	
Quantity	Value
String Length L (cm)	±
Frequency f_3 (Hz)	±
Wavelength λ (cm)	±
Parts 3 & 4: Varying Frequency	
Slope (units:)	±
Intercept (units:)	±
Wave Speed (m/s)	±
Parts 5 & 6: Varying Tension	
Slope (units:)	±
Intercept (units:)	±
String Linear Density μ (g/m)	±
Measurement Using Sample String	
String Length L (cm)	±
String mass <i>m</i> (g)	±
String Linear Density μ (g/m)	±

You now have two measurements of μ , neither of which is perfect. What do *you* think μ really is? Justify your answer; also, be quantitative, and include an uncertainty.