Analytical Phy	sics II Lab
Spring 2024	

Dr.	Pogo

Name:	Lab Date:
Partner:	

Lab 2: Interference and Diffraction of Light

Part I: Single Slit		
Quantity	Value	
$D\left(\mathbf{m}\right)$	±	
a (mm)	±	
Slope of y vs m graph (μ m)	±	
Computed λ from slope (nm)	±	
Part II: Double Slit		
$D\left(\mathbf{m}\right)$	±	
d (mm)	±	
Slope of y vs n graph (μ m)	±	
Computed λ from slope (nm)	±	

You now have two measurements of λ , neither of which is perfect. Based on these, what do *you* think λ really is? Justify your answer; also, be quantitative, and include an uncertainty.