Name: \qquad Lab Date: \qquad
Partner: \qquad
Worksheet 3: Lenses

Part II: Distant Object (Exit Sign)	
Quantity	Value
$f(\mathrm{~mm})$	\pm
Part III: Varying Positions	
Object height (direct measurement) h_{0} (cm)	\pm
Plot 1: slope of ($\left.d_{0} \cdot d_{\mathrm{i}}\right)$ vs $\left(d_{\mathrm{o}}+d_{\mathrm{i}}\right)$	$\pm \quad$ ()
Plot 1: intercept of $\left(d_{\mathrm{o}} \cdot d_{\mathrm{i}}\right)$ vs $\left(d_{\mathrm{o}}+d_{\mathrm{i}}\right)$	$\pm \quad$ ()
Plot 1: $f(\mathrm{~mm}$)	\pm
Plot 2: slope of $\left(h_{\mathrm{i}}\right)$ vs $\left(-d_{\mathrm{i}} / d_{\mathrm{o}}\right)$	\pm
Plot 2: Object height h_{o} (cm)	\pm
You now have two measurements of f and two measurements of h_{0}, none of which are perfect. Based on these, what do you think f and h_{o}, really are? Justify your answer, be quantitative, and include uncertainties.	

