Analytical Phy	sics II Lab
Spring 2024	

Dr.	Pogo

Name:	Lab Date:
Partner:	

Worksheet 3: Lenses

Part II: Distant Object (Exit Sign)					
Quantity	Value				
f(mm)	±				
Part III: Varying Positions					
Object height (direct measurement) h_0 (cm)	±				
Plot 1: slope of $(d_0 \cdot d_i)$ vs $(d_0 + d_i)$	±	()		
Plot 1: intercept of $(d_0 \cdot d_i)$ vs $(d_0 + d_i)$	±	()		
Plot 1: f (mm)	±				
Plot 2: slope of (h_i) vs $(-d_i/d_o)$	±				
Plot 2: Object height h_0 (cm)	±				

You now have two measurements of f and two measurements of h_0 , none of which are perfect. Based on these, what do you think f and h_0 , really are? Justify your answer, be quantitative, and include uncertainties.