Analytical Physics II Lab Worksheet for Lab 9: Time Constants

Name: Dat		Lab:	
Partner:			
Power Supply setting V_{max} (use voltme	eter): $V_{\text{max}} = $	V	
Nominal Value of your capacitor:	$C_{\text{nom}} =$	mF	
Value of your resistor (from ohmmeter	r): $R = $	<u>± kΩ</u>	
Nominal time constant $\tau = RC$:	$\tau_{\rm nom} =$	<u>S</u>	$(\tau_{\text{goal}} \approx 90 - 100 \text{ s})$
Part I: Discharging $V(t) = V_{\text{max}} e^{\frac{-t}{RC}}$	and	$\ln(V) = \frac{-t}{RC}$	$+\ln(V_{\rm max})$
Slope of $\ln(V)$ vs. <i>t</i> :	slope =	±	s ⁻¹
Intercept of $\ln(V)$ vs. <i>t</i> :	intercept =	±	
Computed V_{max} from intercept:	<i>V</i> _{max} =	±	V
Computed time constant:	τ=	±	seconds
Computed capacitance:	<i>C</i> ₁ =	±	mF
Part II: Charging $V(t) = V_{\max} \left(1 - e^{\frac{-\pi}{RC}} \right)$	$\left(\frac{t}{c}\right)$ and	$\ln(1-\frac{V}{V_{\max}})$	$=\frac{-t}{RC}$
Estimate: $V_{\text{final}} \rightarrow V_{\text{max}}$	<i>V</i> _{max} =	<u>+</u>	V
(but use the "true" V_{max} in Excel to create a column $f = 1 - \frac{V}{V_{\text{max}}} \dots$)			
Slope of $ln(f)$ vs. t :	<i>slope</i> =	<u>+</u>	s ⁻¹
Computed time constant:	<i>τ</i> =	<u>+</u>	seconds
Computed capacitance:	<i>C</i> ₂ =	±	mF
Discuss what you think is the best value for C:			