Name: \qquad Date of Lab: \qquad

Lab Manual Steps:

8) Draw an excellent copy of your scope screen here \rightarrow
9) Your voltage scale: \qquad $V_{\mathrm{pp}}: \quad$ divs

$$
V_{\mathrm{pp}}: \xrightarrow[\mathrm{V}]{ }
$$

10) Your time scale: \qquad $T: \quad$ divs T : \qquad ms

$$
f_{\text {calc }}: \quad \mathrm{Hz}
$$

$f_{\text {Function Generator: }}$ \qquad Hz
11) "Cursors": V_{pp} : \qquad
12) "Cursors": T : \qquad ms
$f:$ \qquad
13) Your new voltage scale: \qquad $V_{\mathrm{pp}}: \quad$ divs $V_{\mathrm{pp}}:$ \qquad
Your new time scale: \qquad $T: \quad$ divs T : \qquad
$f_{\text {calc }}$: \qquad Hz
$V_{\text {cursors: }}$ \qquad V $f_{\text {cursors }}$: \qquad
14) "Measure": V_{pp} : \qquad V T : \qquad
\qquad
18) For the same signal, "Measure" on the scope:
V_{RMS} : \qquad Multimeter, set to ACV: $\quad V_{\mathrm{RMS}}: \quad \mathrm{V} \quad f: \underset{\mathrm{Hz}}{ }$
Convert from multimeter $V_{\mathrm{RMS}}: \quad V_{\mathrm{pp}}: \quad \mathrm{V}$
19) $f_{\min } \approx$ \qquad Hz , and was limited by which device: (Scope) (Function Generator) $f_{\max } \approx \ldots \quad \mathrm{Hz}$, and was limited by which device: (Scope) (Function Generator)
20) $\quad V_{\mathrm{PP}-\min } \approx$ \qquad mV , and was limited by which device: (Scope) (Function Generator)
$V_{\text {PP-max }} \approx$ \qquad mV , and was limited by which device:
(Scope) (Function Generator)
21) Purpose of "duty cycle: knob: \qquad
\qquad
22) Using BNC: $V_{\mathrm{pp}}: \quad \mathrm{V} \quad f:$ \qquad $\mathrm{Hz} \quad t_{\text {upper }}$: \qquad ms $t_{\text {lower }}$: \qquad
23) Using Banana wires: $T_{\text {Bounce }}$: \qquad ms
25) Disconnected banana wires: f : \qquad Hz

What is the "real life" application that created this frequency? \qquad
(more on other side...)

Lab Practical:
First Mystery signal:

$$
\begin{aligned}
& \text { Name: }(\mathrm{A})(\mathrm{B})(\mathrm{C})(\mathrm{D}) \\
& f= \\
& V_{\mathrm{pp}}= \\
& \text { Shape }=\underline{(\text { sinusoid })(\text { triangle })(\text { square })} \\
& \text { Duty Cycle }= \\
& \mathrm{DC}_{\text {offset }}=
\end{aligned}
$$

Second Mystery signal:

$$
\begin{aligned}
& \text { Name: }(\mathrm{A})(\mathrm{B})(\mathrm{C})(\mathrm{D}) \\
& f= \\
& V_{\mathrm{pp}}= \\
& \text { Shape }=\underline{(\text { sinusoid })(\text { triangle })(\text { square })} \\
& \text { Duty Cycle }= \\
& \mathrm{DC}_{\text {offset }}=
\end{aligned}
$$

