Name:	Date of Lab:	
Lab Manual Steps:		
8) Draw an excellent copy of your	r scope screen here \rightarrow	
9) Your voltage scale:	$V_{pp}:$ <u>divs</u> $V_{pp}:$ <u>V</u>	_
10) Your time scale:	_ T: T: ms	-
f_{calc} : <u>Hz</u>	$f_{\text{Function Generator}}$ <u>Hz</u>	
11) "Cursors": <i>V</i> _{pp} : V		
12) "Cursors": <i>T</i> :ms	<i>f</i> :Hz	
13) Your new voltage scale:	$\underline{\qquad \qquad } V_{\rm pp}: \underline{\qquad \qquad } divs V_{\rm pp}: \underline{\qquad \qquad } V$	
Your new time scale:	<i>T</i> : <u>ms</u>	
<i>f</i> calc:	<u>Hz</u> V_{cursors} : <u>V</u> f_{cursors} : <u>Hz</u>	
14) "Measure": V_{pp} : <u>V</u>	<i>T</i> : <i>f</i> : Hz	
18) For the same signal, "Measure	e" on the scope: $V_{\rm RMS}$: <u>V</u>	
Multimete	er, set to ACV: V_{RMS} : V f : Hz	
Convert from mu	ultimeter $V_{\rm RMS}$: $V_{\rm pp}$: <u>V</u>	
19) $f_{\min} \approx \underline{Hz}$,	and was limited by which device: (Scope) (Function Generator)	
$f_{\max} \approx \underline{Hz}$,	and was limited by which device: (Scope) (Function Generator)	
20) $V_{\rm PP-min} \approx \underline{mV}$,	and was limited by which device: (Scope) (Function Generator)	
$V_{\rm PP-max} \approx \underline{mV}$,	and was limited by which device: (Scope) (Function Generator)	
21) Purpose of "duty cycle: knob:		
22) Using BNC: <i>V</i> _{pp} : V	$\underline{T} f: \underline{Hz} t_{upper}: \underline{ms} t_{lower}: \underline{ms}$	
23) Using Banana wires: T _{Bounce} : _	ms	
25) Disconnected banana wires: <i>f</i> :	Hz	
What is the "real life" applicat	tion that created this frequency?	
(more on other side)		

Lab Practical:

First Mystery signal:	Name: (A) (B) (C) (D)
	<i>f</i> =
	<i>V</i> _{pp} =
	Shape = (sinusoid) (triangle)(square)
	Duty Cycle =
	DC _{offset} =
Second Mystery signal:	Name: (A) (B) (C) (D)
	<i>f</i> =
	<i>V</i> _{pp} =
	Shape = <u>(sinusoid) (triangle)(square)</u>
	Duty Cycle =

DC_{offset} = _____