Examples of Flows and their Associated Complex Potentials, following White's Fluid Mechanics (5th edition)

z = x + iy $w = \phi + i\psi$ $dw/dz = V_x - iV_y$

Description	\vec{V}	W	ψ	φ
Uniform flow	$V_x = U, V_y = V$	w = (U - iV)z	Uy - Vx	Ux + Vy
See page 265, 545.				
Simple source of strength <i>m</i>	$V_r = m/r$	$w = m \ln(z - z_0)$	m heta	$m\ln(r)$
m^2/s , located at z_0 .	$V_{\theta} = 0$			
$m = Q/(2\pi b)$				
if <i>m</i> < 0, it is a "sink".	origin is "singular"			
See page 265, 545.				
"Irrotational" vortex (CCW),	$V_r = 0$	<i>w</i> =	$-k\ln(r)$	kθ
with center at z_0 .	$V_{\theta} = k/r$	$-ik\ln(z-z_0)$		
This vortex is fastest at its				
center.		Use negative values of		
Vorticity at the origin $\rightarrow \infty$, but		<i>k</i> for CW rotation;		
is zero everywhere else.		$\Gamma = 2\pi k$		
See page 265, 546.				
Doublet of strength λ m ³ /s,	$u = -\lambda (x^2 - y^2) / (x^2 + y^2)^2$	$w = \lambda I(z - z_0)$	$-\lambda \sin(\theta)/r$	$\lambda \cos(\theta)/r$
located at z_0 .	$v = -2\lambda x y / (x^2 + y^2)^2$			
See page 543.				
Stagnation Point (corner	<i>n</i> corresponds to the angle β	$w = Az^n$	$Ar^n \sin(n\theta)$	$Ar^n \cos(n\theta)$
flow), <i>u</i> >0 along <i>y</i> =0, <i>x</i> >0.	of the corner: $\beta = 180^{\circ}/n =$			
See page 546.	π/n			