Center of Mass

What is the center of mass of these "objects"?

1.

m_{1}
$\square \square+\square+\square$
$\square \square$

This object can be broken into two groups:
$A_{1}=b_{1} h_{1}=4.0 \mathrm{~m}^{2}$
$A_{2}=b_{2} h_{2}=1.0 \mathrm{~m}^{2}$
$A_{\text {total }}=A_{1}+A_{2}=5.0 \mathrm{~m}^{2}$
$x_{\mathrm{cm} 1}=\left(b_{1}\right) / 2=1 \mathrm{~m}$

$$
\begin{aligned}
& y_{\mathrm{cm} 1}=\left(h_{1}\right) / 2=1 \mathrm{~m} \\
& y_{\mathrm{cm} 2}=h_{3}+\left(h_{2}\right) / 2=1 \mathrm{~m}
\end{aligned}
$$

So $x_{C M}=\frac{1}{5 \mathrm{~m}^{2}}\left[(1 \mathrm{~m})\left(4 \mathrm{~m}^{2}\right)+(2.5 \mathrm{~m})\left(1 \mathrm{~m}^{2}\right)\right]=x_{\mathrm{CM}}=1.3 \mathrm{~m}$
Also, $y_{C M}=\frac{1}{5 \mathrm{~m}^{2}}\left[(1 \mathrm{~m})\left(4 \mathrm{~m}^{2}\right)+(1 \mathrm{~m})\left(1 \mathrm{~m}^{2}\right)\right]=y_{\mathrm{CM}}=1.0 \mathrm{~m}$

$A_{1}=b h=24.0 \mathrm{~m}^{2}$
$A_{2}=-D^{2}=-2.25 \mathrm{~m}^{2}$ (because this is a hole, this area is negative!)
$A_{\text {total }}=A_{1}+A_{2}=21.75 \mathrm{~m}^{2}$
$x_{\mathrm{cm} 1}=b / 2=3 \mathrm{~m}$

$$
x_{\mathrm{cm} 2}=B+1 / 2 D=4.75 \mathrm{~m}
$$

$$
\begin{aligned}
& y_{\mathrm{cm} 1}=h / 2=2 \mathrm{~m} \\
& y_{\mathrm{cm} 2}=H+1 / 2 D=2.75 \mathrm{~m}
\end{aligned}
$$

So $x_{C M}=\frac{1}{21.75 \mathrm{~m}^{2}}\left[(3 \mathrm{~m})\left(24 \mathrm{~m}^{2}\right)+(4.75 \mathrm{~m})\left(-2.25 \mathrm{~m}^{2}\right)\right]=x_{\mathrm{CM}}=2.8190 \mathrm{~m}$
Also, $y_{C M}=\frac{1}{21.75 \mathrm{~m}^{2}}\left[(2 \mathrm{~m})\left(24 \mathrm{~m}^{2}\right)+(2.75 \mathrm{~m})\left(-2.25 \mathrm{~m}^{2}\right)\right]=y_{\mathrm{CM}}=1.9224 \mathrm{~m}$

