I. Given
$$(D - a)(D - b)y = 0$$
, where $D = \frac{dy}{dx}$, then

Page 410: If
$$a \neq b$$
, then $y = c_1 e^{ax} + c_2 e^{bx}$ Has unknown constants c_1, c_2 .

Page 410: If
$$a = b$$
, then $y = (Ax + B)e^{ax}$

Page 411: If $a = \alpha + i\beta$, and $b = \alpha - i\beta$, then

$$y = e^{\alpha x} \left(A e^{i\beta x} + B e^{-i\beta x} \right)$$

OR

$$y = e^{\alpha x} \left(c_1 \sin(\beta x) + c_2 \cos(\beta x) \right)$$

OR

$$y = C e^{\alpha x} \sin(\beta x + \gamma)$$

Has unknown constants A, B.

Has unknown constants A, B.

Has unknown constants c_1 , c_2 .

Has unknown constants C, γ .

II. Given
$$(D - a)(D - b)y = f(x)$$
, where $D = \frac{dy}{dx}$, then

First solve the equation above in part I. Then, to that solution, add a particular solution y_p of the following form:

No Page: If f(x) = k, then $y_p = C$. Plug y_p into original equation to find *C*.

Page 420: If $f(x) = ke^{cx}$, then compare the given values for *a*, *b*, and *c*:

If all three (a, b, c) are unequal: $y_p = Ce^{cx}$ If $(a \neq b)$, but c = (a or b): $y_p = Cxe^{cx}$ If (a = b = c),: $y_p = Cx^2e^{cx}$

Page 421 (sort of) : If $f(x) = k \sin(wx)$ or $f(x) = k \cos(wx)$, then:

 $y_p = K_1 \sin(wx) + K_2 \cos(wx)$ Plug y_p into original equation to find K_1, K_2 .