Find $\mathbf{z}(\omega)$. This circuit has two branches (top and bottom), each of which has two parts. Each element can be treated like a resistor for purposes of finding impedance:

$$
\begin{aligned}
& z_{\text {top }}=i \omega L-\frac{1}{\omega C} i=\frac{\omega^{2} L C-1}{\omega C} i \\
& z_{\text {bottom }}=R-\frac{1}{\omega C} i=\frac{R \omega C-i}{\omega C}
\end{aligned}
$$

Combining these in parallel:

$$
\frac{1}{z_{\text {total }}}=\frac{1}{z_{\text {top }}}+\frac{1}{z_{\text {bottom }}} \quad \frac{1}{z_{\text {total }}}=\frac{\omega C}{\left(\omega^{2} L C-1\right)_{i}}+\frac{\omega C}{R \omega C-i}
$$

Use a complex conjugate: $\quad \frac{1}{z_{\text {total }}}=\frac{-\omega C i}{\left(\omega^{2} L C-1\right)}+\left[\frac{\omega C}{R \omega C-i}\right]\left[\frac{R \omega C+i}{R \omega C+i}\right]$

$$
\frac{1}{z_{\text {total }}}=\frac{-\omega C i}{\left(\omega^{2} L C-1\right)}+\frac{R \omega^{2} C^{2}}{R^{2} \omega^{2} C^{2}+1}+\frac{\omega C i}{R^{2} \omega^{2} C^{2}+1}
$$

Common denominator:

$$
\begin{aligned}
& \frac{1}{z_{\text {total }}}=\frac{\left(R^{2} \omega^{2} C^{2}+1\right)(-\omega C i)+\left(R \omega^{2} C^{2}+\omega C i\right)\left(\omega^{2} L C-1\right)}{\left(\omega^{2} L C-1\right)\left(R^{2} \omega^{2} C^{2}+1\right)} \\
& z_{\text {total }}=\frac{\left(\omega^{2} L C-1\right)\left(R^{2} \omega^{2} C^{2}+1\right)}{\left(R^{2} \omega^{2} C^{2}+1\right)(-\omega C i)+\left(R \omega^{2} C^{2}+\omega C i\right)\left(\omega^{2} L C-1\right)}
\end{aligned}
$$

Obviously, this could be simplified more. Also, in hindsight, it probably would have been advisable to do this all in Euler ("exponential") notation.

Here are some numerical values: Given

$$
\begin{aligned}
& \omega=377 \mathrm{rad} / \mathrm{s} \text { (standard } \omega \text { for AC power) } \\
& L=2 \mathrm{H} \\
& R=150 \Omega \\
& C=1 \times 10^{-5} \mathrm{~F}
\end{aligned}
$$

Then

$$
\begin{aligned}
& z_{\text {total }}=494.56-248.13 \mathrm{i} \Omega \\
& \theta=-26.6^{\circ} \\
& \left|z_{\text {total }}\right|=553.3 \Omega
\end{aligned}
$$

