Suppose you measure that temperature is related to pressure and density by: $T=k_{1} \frac{P}{\rho}$
Also, you measure pressure and density as functions of time: $\quad P=k_{2} t^{2}$

$$
\begin{equation*}
\text { and } \quad \rho=k_{3} t^{4} \tag{2}
\end{equation*}
$$

You want to know the rate of change of temperature with respect to time. In this problem, you could do it pretty easily by straight substitution:

Since $T=k_{1} \frac{P}{\rho}=k_{1} \frac{k_{2} t^{2}}{k_{3} t^{4}}=\frac{k_{1} k_{2}}{k_{3}} \frac{1}{t^{2}}=\frac{k_{1} k_{2}}{k_{3}} t^{-2}$
Therefore, $\frac{\partial T}{\partial t}=\frac{-2 k_{1} k_{2}}{k_{3}} t^{-3}$.
However, sometimes, it's easier to use differentials (but not in this problem!):

$$
\begin{array}{llrl}
\frac{\partial T}{\partial t}=\frac{\partial T}{\partial P} \frac{d P}{d t}+\frac{\partial T}{\partial \rho} \frac{d \rho}{d t}, \text { where: } & \frac{\partial T}{\partial P} & =\frac{k_{1}}{\rho} & \text { from [1] } \\
\frac{\partial T}{\partial \rho} & =\frac{-k_{1} p}{\rho^{2}} & \text { from [1] } \\
\frac{\partial P}{\partial t} & =2 k_{2} t & \text { from [2] } \\
\frac{\partial \rho}{\partial t} & =4 k_{3} t^{3} & \text { from [3] }
\end{array}
$$

Plugging these 4 derivatives into the differential, we get:

$$
\begin{array}{ll}
\frac{\partial T}{\partial t}=\frac{\partial T}{\partial p} \frac{d p}{d t}+\frac{\partial T}{\partial \rho} \frac{d \rho}{d t}=\left(\frac{k_{1}}{\rho}\right)\left(2 k_{2} t\right)+\left(\frac{-k_{1} p}{\rho^{2}}\right)\left(4 k_{3} t^{3}\right) & \text { Substitute for } p, \rho \text { from [2], [3] } \\
\frac{\partial T}{\partial t}=\left(\frac{k_{1}}{k_{3} t^{4}}\right)\left(2 k_{2} t\right)+\left(\frac{-k_{1}\left(k_{2} t^{2}\right)}{\left(k_{3} t^{4}\right)^{2}}\right)\left(4 k_{3} t^{3}\right) & \text { Multiply everything together: } \\
\frac{\partial T}{\partial t}=\left(\frac{2 k_{1} k_{2}}{k_{3} t^{3}}\right)-\left(\frac{4 k_{1} k_{2}}{k_{3} t^{3}}\right) & \frac{\partial T}{\partial t}=-\left(\frac{2 k_{1} k_{2}}{k_{3} t^{3}}\right)
\end{array}
$$

We get the same answer either way. In some problems the differentials method is easier. In some, the substitution method is easier.

