Problem: We want a forward difference expression for the first derivative that is accurate to $\mathcal{O}\left(h^{2}\right)$. In other words, we want to do algebra to find $f^{\prime}(x)$ in terms of $h, f_{\mathrm{i}}, f_{i+1}, f_{i+2}$, etc..., but which may not include any higher derivatives like $f^{\prime \prime}$ or $f^{\prime \prime \prime}$ in it, even though such terms might appear in the original Taylor series.

Starting Point: $\quad f(x+h)=f(x)+h f^{\prime}(x)+\frac{h^{2}}{2!} f^{\prime \prime}(x)+\frac{h^{3}}{3!} f^{\prime \prime \prime}(x)+\frac{h^{4}}{4!} f^{i v}(x)+\ldots$

Similarly, $\quad f(x+2 h)=f(x)+2 h f^{\prime}(x)+\frac{(2 h)^{2}}{2!} f^{\prime \prime}(x)+\frac{(2 h)^{3}}{3!} f^{\prime \prime \prime}(x)+\frac{(2 h)^{4}}{4!} f^{i v}(x)+\ldots$

Solving [1] for $f^{\prime}: f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}-\frac{h}{2} f^{\prime \prime}(x)-\frac{h^{2}}{6} f^{\prime \prime \prime}(x)-\frac{h^{3}}{24} f^{i v}(x)+\ldots$
Let's find a way to get rid of $f^{\prime \prime}$. Algebraically performing EQ [2]-2×EQ [1] results in:
$f(x+2 h)-2 f(x+h)=$
$[f(x)-2 f(x)]+\left[2 h f^{\prime}(x)-2 h f^{\prime}(x)\right]+\left[\frac{(2 h)^{2}}{2!} f^{\prime \prime}(x)-2 \frac{h^{2}}{2!} f^{\prime \prime}(x)\right]+\left[\frac{(2 h)^{3}}{3!} f^{\prime \prime \prime}(x)-2 \frac{h^{3}}{3!} f^{\prime \prime \prime}(x)\right]+\ldots$
f^{\prime} isn't supposed to depend on $f^{\prime \prime}$. So, let's solve for $f^{\prime \prime}$ in terms of other stuff. First, we simplify the above:
$f(x+2 h)-2 f(x+h)=[-f(x)]+[0]+\left[h^{2} f^{\prime \prime}(x)\right]+\left[\mathcal{O}(h)^{3}\right]=-f(x)+h^{2} f^{\prime \prime}(x)+\mathcal{O}\left(h^{3}\right)$

We accidentally eliminated $f^{\prime \prime \prime}$, too, which is good luck for us! Rearranging this for $f^{\prime \prime}$ results in:

$$
\begin{equation*}
f^{\prime \prime}(x)=\frac{f(x+2 h)-2 f(x+h)+f(x)}{h^{2}}+\mathcal{O}\left(h^{1}\right) \tag{4}
\end{equation*}
$$

Next, we substitute our $\mathrm{EQ}[4]$ into $\mathrm{EQ}[3]$ so that $f^{\prime \prime}$ finally disappears:

$$
\begin{equation*}
f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}-\frac{h}{2}\left[\frac{f(x+2 h)-2 f(x+h)+f(x)}{h^{2}}\right]+\mathcal{O}\left(h^{2}\right) \tag{5}
\end{equation*}
$$

Expanding and distributing:

$$
f^{\prime}(x)=\frac{f(x+h)-f(x)+\left[-\frac{1}{2} f(x+2 h)+f(x+h)-\frac{1}{2} f(x)\right]}{h}+\mathcal{O}\left(h^{2}\right)+\mathcal{O}\left(h^{2}\right)
$$

One more rearrangement:

$$
f^{\prime}(x)=\frac{-f(x+2 h)+4 f(x+h)-3 f(x)}{2 h}+\mathcal{O}\left(h^{2}\right)
$$

Rewriting with subscript notation:

$$
f_{i}^{\prime}=\frac{-f_{i+2}+4 f_{i+1}-3 f_{i}}{2 h}+\mathcal{O}\left(h^{2}\right)
$$

