Name:

\qquad

You may use Excel. You may not use your calculator. This worksheet is due at the end of class.

Prob 1: In 1 Kings 7:23 we read: ...the metal basin was circular, measuring ten cubits from brim to brim, and thirty cubits in circumference...
\rightarrow Determine π and $\Delta \pi$ from this data, knowing that only integer values of cubits are ever recorded. Note: a "cubit" is the distance from the elbow to the fingertips, and naturally varied a bit from worker to worker. How does this variation affect the result for pi?

Prob 2: A solid cylinder has $R=(0.286 \pm 0.002) \mathrm{m}$ and $H=(0.82 \pm 0.01) \mathrm{m}$, determine $V \pm \Delta V$.

Prob 3: Given: $T=(1-S) \rho g h^{3}$ (i.e., the tension in a string holding a wooden cube having sides h and specific gravity S submerged in a fluid of density ρ). Assume g is known exactly. Symbolically determine ΔT.

Prob 4: Given $V_{0}=\sqrt{V_{0 x}^{2}+V_{0 y}^{2}}$ (i.e., the initial speed of a projectile), determine ΔV_{0}.

Prob 5: Given $\theta_{0}=\tan ^{-1}\left(\frac{V_{0 y}}{V_{0 x}}\right)$ (i.e., the initial angle of a projectile), determine $\Delta \theta$.
Recall: $\frac{d}{d x} \arctan u=\frac{1}{1+u^{2}} \frac{d u}{d x}$. You should choose to define $u=V_{\text {oy }} / V_{\text {ox }}$.

Prob 6: Given $T=2 \pi \sqrt{\frac{I}{m g h}}$ (i.e., the period of a physical pendulum), find ΔT. Assume g is known.

Prob 7: Given $u^{*}=\left(1-\frac{r}{R}\right)^{1 / 7}$ (i.e., the relative speed of turbulent flow in pipe of size R as a function of radial position r), find Δu^{*}.

