Breadcrumb

David Johnson

Professor of Chemistry
ISC 326J
585-245-5317
johnson@geneseo.edu

David Johnson has been a member of the Geneseo faculty since 1991.

David Johnson

Office Hours

  • Tuesday 2:30 - 4:00 p.m.

  • Thursday 9:00 - 10:30 a.m.

Curriculum Vitae

Education

  • Ph.D. (Chemistry) Montana State University

  • BA Hamline University

Employment

  • Welch Post Doctoral Fellow, Trinity University, San Antonio, TX

  • Visiting Professor of Chemistry, Carleton College, Northfield, MN

Publications

  • Houser, K.R., Johnson, D.K. and Ishmael, F.T. "Anti-inflammatory Effects on Methoxyphenolic Compounds on Human Airway Cells" Journal of Inflammation, 2012, 9:6 (http://www.journal-inflammatin.com/content/9/6)

  • Robert W. O'Donnell, David K. Johnson, Linda M. Ziegler Andrew J. DiMattina, Robert I. Stone, James A. Holland, ?Endothelial NADPH Oxidase: Mechanism of Activation by Low-Density Lipoprotein? Endothelium, 2003, 10, 291-297.

  • Johnson, D.K.; O?Donnell, R.W.; Schillinger, K.J.; Kwiat, D.K.; Hughes, C.C; McNamara, E.J.; Ishmael, F.; Hogg, M.G., Santhanam, L., Ziegler, L.M.; Chang, M. Dordick, J.S. and Holland, J.A. ?Metabolic Activation of an NADPH Oxidase Inhibitor: Apocynin, An o-Methoxy-4-Substituted Catechol? Endothelium, 2002, 9, 191-203.

  • Holland, J.A. and Johnson, D.K., ?Use of NADPH Oxidase Inhibitors for the Manufacture of a Medicament for Prevention of Atherosclerosis? European Patent 861070B1, 2000.

  • Holland, J.A.; Gross, R.A.; O?Donnell, R.W.; Chang, M.-M.; Johnson, D.K.; and Zeigler, L.M. ?Low-Density Lipoprotein Induced Actin Cytoskeleton Reorganization in Endothelial Cells: Mechanisms of Action? Endothelium, 2001, 8, 117-135.

  • Holland, J.A.; O?Donnell, R.W.; Chang, M.; Johnson, D.K. and Ziegler, L.M. ?Endothelial Cell Oxidant Production: Effect of NADPH Oxidase Inhibitors? Endothelium, 2000, 7, 109-119.

  • Holland, J.A. and Johnson, D.K. , ?Prevention of Atherosclerosis Using NADPH Oxidase Inhibitors? United States Patent 5902831, 1999.

More About Me

Research Interests

My research is directed at understanding the molecular basis of NADPH oxidase inhibition by apocynin (4-hydroxy-3-methoxyacetophenone). The activated NADPH oxidase complex produces reactive oxygen species which are involved in the early stage development of a series of inflammatory diseases such as atherosclerosis, diabetic retinopathy and asthma. A clearer understanding of this inhibition mechanism may lead to a novel therapy for diseases involving NADPH oxidase induced oxidative stress.

Additional Interests

  • The role of NADPH oxidase induced oxidative stress in inflammatory disease development.
  • The utilization of NMR spectroscopy in undergraduate laboratories to study the stereochemistry of addition reactions.

Classes

  • CHEM 216: Organic Chemistry Laboratory

    Laboratory practices in representative organic preparations and procedures. Prerequisites: /Corequisite: CHEM 211 or CHEM 223. Offered every fall and spring

  • CHEM 224: Principles of Organic Chem II

    Continuation of CHEM 223 with emphasis on the biochemically important alcohol, amine, carbonyl and aromatic fuctional groups. Structure elucidation by spectroscopic methods is also explored. Prerequisites: CHEM 211 or CHEM 223. Offered every fall.