
 1

MATLAB PRIMER

To get the MATLAB program, go to software.geneseo.edu. On the Mac or Windows
side, click on “academic.” Among the many programs you will find the latest
version of MATLAB. For help, you may go to CIT self-help page (there is a link to
it on the left side of software page). Click on CIT SELF HELP GUIDES, scroll down
to software and click on Matlab. Best of all, the folks at the CIT Help Desk are
ready and willing to help you install Matlab.

I. STARTING UP

Open Matlab from your Programs directory or by clicking on its icon.

There are several important windows that you use in Matlab: the Command Window,
the Command History, the Current Directory, and the Editor. To see these three
windows at once (or suppress them later), click on the Desktop in the Matlab tool bar.
Choose Desktop Layout. The option labeled Default will display the command window,
the command history and the contents of “Current Directory,” which is the folder called
“Work” by default.

The Command Window is Matlab’s scrap paper. You do all your commutations here.
But it is not permanent. It works very much like the screen on the TI 89 with regards to
editing and recalling lines, but it is blank again every time you open a new session.

The Command History is where the history of your Matlab commutations are stored.
Like the TI 89, it stores the most recent commands (lots of them) and sorts them by
session date and time.

For a more systematic and permanent storage, you can store the command history of you
session as an M-file for future reference. To do so, either click on the date and time of
your session in the Command History to highlight your entire session or highlight the
portion you want to save. Right click and choose “Create M-file.” Then the Editor will
pop up with your work entered. Name your file and save it. To reactivate your session,
just type its name at the prompt in the Command Window.

Example 1

Open Matlab by clicking on the icon. If necessary, bring the Command History
window and the Current Directory into view via the Desktop tab. In this example, we
add 2 and 2, assign the answer to the variable a. Then we will compute a3 + 3 and
assign it to b. We will then change our mind and compute a^3 + 5 and assign it to b.
Finally we take the square root of b and check the result by squaring our answer.

 2

***All commands are entered at the last >> prompt of the Command Window and
executed by pressing Enter. To suppress outcome (you will want to later), end your
line with a semi-colon.
Important: to stop a command, press Crtl and C simultaneously and then press enter.

To reuse and edit a command, scroll up with the up arrow until you reach the
command. (You can scroll down if you overshoot.) Note that the command appears at
the bottom-most prompt, ready for re-use or editing.

>> format compact
>> format short
>> clear
%Read about the above commands in the paragraph that follows.
>> a=2+2
a =
 4
>> b=a^3+3
b =
 67
>> b=a^3+5
b =
 69
>> sqrt(b)
ans =
 8.3066
>> ans^2
ans =
 69

Note that sqrt(b) is assigned to the temporary variable ans. The line in bold (my edit) was
not typed but re-used and edited.

The first two lines help us format our answer. The first, format compact, eliminates
spaces between the response lines. You may want to make a habit of starting with those
lines. The second, format short, tells Matlab to give us 5 places in our decimal answers.
Other format options include format rat, which tells Matlab to give us a rational
approximation to the given answer even though all its computations are floating point
numbers. Also, we can keep lots of decimal places with format long. The command
clear clears all the variables so you won’t get surprised with an unintentional value. The
command clear x clears only what you stored in x.

Note the entries in the Command History. It records each new command, but no echoes.
To SAVE your session or part of the session, click on the date of your session in the
command window. Right click and select Create M-file. The Editor will pop up with a
copy of the command history. Save your file as you would save any document. Name
your file and suppose I name my M file “test.” For now, your file to the default folder

 3

Work that Matlab provides. (If you are working on a school machine and want to save
the file, you must either save it to a disk of jump drive or to your web space.)

Now exit Matlab and restart it. The Command Window is blank. At the prompt, you can
type the name of your saved session. It will be reactivated. So if I type “test” at the
prompt, all the commands in the M-file test will be executed. The big advantage of
saving a session through the Editor is that you can indeed edit you work just as you do a
word file and save only what you want. You can also add comments by beginning a
comment line with the symbol %. Your comments (documentation) will not appear in
the command window, but will be very important for you to be able to interpret your own
work. So use % generously!

You can get Help with a command by typing help (command) e.g. entering help clear
will download information about the command clear. Otherwise, click on Help in the tool
bar and go to MATLAB Help for more extensive options. (EXPLORE!!!!!)

II. MATLAB as Calculator.

a. Arithmetic operations are computed on Matlab in the same manner as an ordinary

calculator:

2+2
2*5.7
3.2^7
2/7 (the outcome is in decimal form)
(Note: Matlab also uses the backslash for division where a\b means b divided by a. So a/b
= b\a. Be careful!)

Complex numbers use i or j for sqrt(-1):

>> (2+3i)*(5+7i)
ans =
 -11 + 29i

Preceding an operation by a period allows you to perform the operation on a vector of
numbers. Let’s square all the numbers in the vector v = [2 3 4] .

>> [2 3 4].^2
ans =
 4 9 16

The same calculation without the period produces an error message because we cannot
square a vector. The period indicates that the operation should be performed on each
component separately.

 4

To assign a value to a variable (case sensitive), Matlab uses the equal sign. So to assign
the value 10 to a and 20 to A, and then add them, write:
>> a=10
a =
 10
>> A=20
A =
 20
>> A+a
ans =
 30
If variables a and b have been assigned values, then we can compute a^2, and a*b, etc.
Some of the standard functions available in Matlab are:

sin asin (arcsin) exp (e) abs (absolute value) sqrt (square root)
cos acos log (natural log) floor ceil
tan atan

The number  is denoted by pi (lower case). The number e is obtained by entering
exp(1). You can assign it to the variable e

Note that the word log denotes natural log. Log10 (base 10) of x would be computed by
log(x)/log(10).

b. Matlab allows you to create your own functions through M-files. First, go to File
in the tool bar and click on NEW. Then select M-File. The Editor window will
pop up blank. Say you want to form the function y = f(x) where f(x) = x2 + x + 1.
On the top line of the page write:

function y = f(x)

The first line tells Matlab that the M file contains the definition of a function, that
the function’s name is f, that it accepts one input x and yields one number y as its
output.

On the next line, give the recipe for the output y in terms of x:
 y = x.^2 + x + 1
(Note the period before the exponential operator. More on that later.)

 Now save the M-file, naming it f (or whatever your function’s name is).

function y = f(x)
y = x.^2 + x + 1

 5

Now in the Command window, enter f(2). The response will be 7.

>> f(2)
y =
 7
ans =
 7

Note: in the Command Window, the answer 7 is assigned to the temporary variable ans
and y remains unassigned. To assign y the value 7, do:

>> y =f(2)
y =
 7
y =
 7

To plot a function, we need to set a domain and an increment that determines how many
points are sampled for graphing. So to graph our function f on the domain -1  x  1 at
an increment of 0.05, we proceed as follows. Don’t forget the semicolon!

>> x=[-1:.05:1];
>> y=f(x);
>> plot(x,y)

The first instruction establishes the domain x =[left endpoint: increment : right endpoint].
The resulting x is actually a vector of values. We compute the vector of y-values with the
instruction y = f(x). (That is why we used .^ in the definition of the function. More later.)
Then we instruct Matlab to plot. The plot appears in a separate window. You can save it
as name.fig. Look up the plot options with “help plot.”

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

Exercise Set 1 for parts I and II.

1. Turn on Matlab. Pull down the Desktop tab. Make it so that you only view the
Command window. Then return to the default layout.

 6

2. Perform the following calculations. Answers should display four decimal places.

i. Compute
3

5
 
 
 

ii. Assign the value e to the variable a and then compute 2a  .
iii. Bring back the previous command to the prompt >> using the up arrow and

assign the value obtained in part ii to the value b. Then compute b2 – 2.
iv. Compute ln(10) and log10(1000)

3. Assign the vector [2 3 4] to the variable v and the vector [-1 0 ½] to the vector t.

Compute v*w. (You should get an error message.) Now compute v .* w and v.^w.
What’s the difference?

4. Make a function called fred where if y = fred (x), then y = x3 – x. Plot fred on the

interval x from -2 to +2 with increments of 0.05. Then edit fred so that y = x3 + x
and replot. Remember to save fred.

 Using M-Files:

5. Close Matlab and reopen. This time, we will do most of our work in an M file. So

open a new M-File. (Go to File, New, M File.) When the Editor pops up, the first
thing to do is to save the document. I like to use something like Session(Date) or a
short temporary nickname like “today.” Instead of working in the Command
Window, work in the M file so that you can edit much more easily and have a
permanent record of your session that can be reactivated. A typical small M File
might look like the following:

1- format short
2- format compact
3- clear
4- a=sin(pi/6)
5- b=cos(pi/15)

You edit it just as you would a word document. If you want to check you corrections
and edits, save the document and then type its name in the Command Window. The
command sequence will be executed. Your job: make and M File and do some
computations with it. Experiment!!!!!

III. Matrices and Vectors.

“Matlab” is short for Matrix Lab. It’s all about matrices. Every function and/or
operation is performed on matrices, whether you know it or not. Mostly, you know it!

 7

So this is a brief introduction to the most important part of Matlab. It is just the tip
of the iceberg.

a. Forming matrices and learning about them.

First we enter the matrix
2 5 3
5 9 0
 
 
 

 and assign it to the variable A.

>> A=[2 5 3;5 9 0]
A =
 2 5 3
 5 9 0

The entries are separated by the space bar (or by commas) and the rows are separated by
the semicolon. Note that when it responds, Matlab omits the brackets. The transpose of a
matrix interchanges row and columns. The transpose of A is A’.

>> A'
ans =
 2 5
 5 9
 3 0

So to obtain A, you could alternatively have entered:

>> B=[2 5; 5 9; 3 0]
B =
 2 5
 5 9
 3 0
A=B'
A =
 2 5 3
 5 9 0

Now let’s find out about A and B.

i. To obtain the dimensions of A, use size(A):
>> size(A)
ans =
 2 3

Matlab returns a vector [rows of A, columns of A].

ii. To obtain the element in the ith row and jth column of A, use A(i, j). For
instance, A(1, 2) gets the entry in the first row, second column of A.

 8

>> A(1, 2)
ans =
 5

We can access the row and column sizes of A as follows by assigning size to a variable.
The variable will be a vector i.e. a 1 2 matrix. We can then extract the components.

>> s=size(A)
s =
 2 3
>> s(1)
ans =
 2

iii. The magic colon : is one of Matlab’s most versatile features!!!!!!

Alone, colon means “all.”

So A(2, :) returns the second row and all the columns.

>> A(2,:)
ans =
 5 9 0

When you see i : j, the colon means all entries from the ith to the jth entry. So A(1,1:2)
will extract the entries from the 1st to the 2nd column in the first row.

>> A(1,1:2)
ans =

2 5

When you see i:m:j, the middle term m is the increment. So A(1, 1:2:3) will return the 1st
and 3rd entries in the first row because we will skip by 2’s.

>> A(1, 1:2:3)
ans =

2 3

Using a increment of -1 will list elements in reverse order. So A(1, 3:-1:1) lists the first
row of A in reverse order.

>> A(1, 3:-1:1)
ans =
 3 5 2

 9

We can build new matrices from parts of old matrices.

>> C=A(1:2,2:3)
C =
 5 3
 9 0

The empty matrix is denoted by [], a bracket pair with nothing in it. When you set
something equal to [], it gets deleted and causes the matrix to collapse to what remains. In
the following, we create a 33 matrix M by using the command rand(3) which creates a
33 with random entries between 0 and 1. (Go to the help menu to find out more.) We
then delete its bottom row.

>> M=rand(3) by setting the bottow row M(3, :) equal to [] .

M =
 0.4447 0.9218 0.4057
 0.6154 0.7382 0.9355
 0.7919 0.1763 0.9169

>> M(3,:)=[]
M =
 0.4447 0.9218 0.4057
 0.6154 0.7382 0.9355

 10

Example: Row operations
 We will perform some row operations on the matrix A:

0 2 3
 2 4 6
 3 1 5

i. First we swap rows 1 and 2. The trick is to first assign those rows to vectors x1 and x2
and then replace the rows of A.

>> x1=A(1,:)

x1 =
 0 2 3

>> x2=A(2,:)
x2 =
 2 4 6

>> A(1,:)=x2

A =
 2 4 6
 2 4 6
 3 1 5

>> A(2,:)=x1
A =

 2 4 6
 0 2 3
 3 1 5

 ii. Now we multiply the new first row 1 by ½:

>> A(1,:) = 1/2*A(1,:)

A =
 1 2 3
 0 2 3
 3 1 5

iii. Now we replace row 3 by row 3 -3*row(1).
>> A(3,:)=A(3,:)-3*(A(1,:))

A3 =
 1 2 3
 0 2 3
 0 -5 -4

 11

Other ways to build matrices and vectors.

i. We can use the colon to produce a row vector of equally spaced numbers and then use
the transpose to get a column vector.

>> x = (3:2:9)
x =
 3 5 7 9
>> x=(3:2:9)'
x =
 3
 5
 7
 9

ii. We can join appropriately sized matrices and vectors. In the next example, we

augment a 32 matrix A with a column vector.
>> A=[1 2;2 3;5 6]
A =
 1 2
 2 3
 5 6
>> b=[2 -1 0]'
b =
 2
 -1
 0
>> C=[A,b]
C =
 1 2 2
 2 3 -1
 5 6 0

Now add a row to the bottom of A. Note the use of the semicolon versus the comma.

>> r=[11,12]
r =
 11 12
>> D=[A;r]
D =
 1 2
 2 3
 5 6
 11 12

 12

The command rand(m,n) will produce a matrix of the indicated size with random
entries. Use the help menu to see how to control the entries.

>> rand(3,4)
ans =
 0.4057 0.4103 0.3529 0.1389
 0.9355 0.8936 0.8132 0.2028
 0.9169 0.0579 0.0099 0.1987

The command eye(n) produces the nn identity matrix. (Sorry about the pun!)

>> eye(2)
ans =
 1 0
 0 1

The command diag is a bit tricky. If you have a matrix, it will extract its diagonal a
put it into a column vector.

>> a=rand(3)
a =
 0.6038 0.0153 0.9318
 0.2722 0.7468 0.4660
 0.1988 0.4451 0.4186
>> diag(a)
ans =
 0.6038
 0.7468
 0.4186

If you have a vector, it will place it in the diagonal.

>> diag([1 2 3])
ans =
 1 0 0
 0 2 0
 0 0 3

The command does more. Please refer to the help menu.

The command zeros(m,n) produces an mn matrix with all zero entries.

 13

>> zeros(2,3)
ans =
 0 0 0
 0 0 0

IV. Matrix Operations.

We add, subtract and multiply by constants as you would expect. So let
a =
 1 3
 2 0
b =
 -1 5
 2 1

Then:

>> 5*a
ans =
 5 15
 10 0
>> a+b
ans =
 0 8
 4 1

Since a and b have compatible sizes, we can multiply them:

>> b*a
ans =
 9 -3
 4 6

Since a is square, we can find its determinant and, if it is not 0, we can find the inverse
of a:

> det(a)
ans =
 -6
>> inv(a)
ans =
 0 1/2
 1/3 -1/6

If we let x = [1, -1], and try to multiply a*x, we get an error message because x is a row
vector. So we take its transpose:
 >> x=[1 -1]

 14

x =
 1 -1
>> a*x
??? Error using ==> mtimes
Inner matrix dimensions must agree.

The last phrases were Matlab’s error message. We couldn’t multiply because the
dimensions were not compatible. So let’s correct it.

>> a*x'
ans =
 -2
 2

But we can multiply on the right:
 >> x*a

ans =
 -1 3

We can raise square matrices to various powers:

>> a^3
ans =
 13 21
 14 6

Component wise operations: When preceded by a period, operations like * and ^
behave component wise. For instance, multiplies a(1,1) by b(1,1), etc. and a . ^ b will
raise a(1,1) to the b(1,1) power.

 > a.* b
ans =
 -1 15
 4 0

>> a.^b
ans =
 1 243
 4 0

Additional Matrix commands:
The ULTIMATE matrix command: rref (reduced row echelon form)

>> rref(a)
ans =
 1 0
 0 1

Other commands:
rank (m) computes the rank of a matrix

 15

norm(v) computes the norm of a vector v
dot(v,w) computes the dot product of two vectors.

Exercise Set 2

1. Enter the following matrices.

1 2 3
1 3 9

4 2 1
A

 
   
  

,
1 0
1 5

2 6
B

 
   
  

i. Display the entries A2,3 and B3,2 .
ii. Set b equal to the second column of B.
iii. Set c = to the third row of A.
iv. Set C = A|b i.e. A augmented with b.
v. Set x equal to the transpose of the first column of B.
vi. Set D equal to the matrix A with the row x adjoined at the bottom.
vii. Set A1 equal to the matrix A with the last column deleted. (Recall that [] is the
empty matrix.)

2. Use the matrices found in exercise 1 to compute the following:

i. A* B
ii. b + c’ (c’ denotes the transpose of c.)
iii. B’* A
iv. A4
v. A-1 (if possible!)

3. i. Use diag to construct a matrix with diagonal [1, -1, 2, 5, 6]

ii. Use rand to create a 5 6 matrix with entries between 0 and 5.
iii. Use zeros to create a vector with 6 entries, all zero.
iv. Use eye to create a 66 identity matrix.

4. Let
2 3

2
1 5

A  
   

and
2 3

2
3 2

B  
  
 

.

i. Compute A2*B2.
ii. Multiply component-wise using .*
iii. Raise each entry in A2 to the corresponding power in B2.

 16

5. Solve the system
4 3 2 5
2 3 7

4 2 8

x y z w
x y z
x y z w

     
    
      

 by augmenting the coefficient matrix by the

column of constants and using rref. Repeat the problem using
0
0
0

 
 
 
  

as the column of

constants.

V. Basic Programming.

The three basic programming tools are the “for” statement, the “while”statements, and
the “if else end” statements.

i. We use the “for” statements when we know how many times we want our
program to loop. The format is as follows:

for x = array

commands

end

The commands are executed once for each column in the array. At each step, x moves to
the next value in the array. In the next example, we add together every third number
numbers from 1 to 34 to obtain the sum s = 1 + 4 + 7 +…+ 34. The array will be denoted
1:3:34. First we initialize the variable s. At each step we add the value of x to the sum s.
Note: the use of semicolons suppresses the view of values--a good thing for long
programs! So we ask for the value of s after the program is executed.

>> s=0;
>> for x=1:3:34
s=s+x;
end
>> s
s =
 210

ii. The “while” statement executes commands while a condition is true. Its

format is as follows:

 17

while expression

commands
end

In the next example, we add the values subsequent numbers until the addition of the last
numbers makes the sum reach 2000 or more. Note the initialization. The last number to
be added is 63. Before adding 63, the sum had not reached 2000.

>> s=0;i=0;
>> while s <2000
i=i+1;
s=s+i;
end
>> s
s =
 2016
>> i
i =
 63

iii. The “if” statement executes a statement if a condition is true and allows

alternatives in other cases. It can have various formats.
if expression
 command executed if expression true
end

 OR

if expression
 command executed if expression true
else
command executed if expression false
end

 OR
if expression 1
 command executed if expression1 true
elseif expression 2

command executed if expression 2 true

 elseif……
 
 else

 command if none of the other expressions are true

 18

end

In the following example, we will generate 100 random numbers between 0 and 1 and
find out how many of them have squares greater than 0.5 and how many do not. (Okay,
so there are lots of better ways to do this.) But the outcome of the program will change
every time it is executed. Noted that in this program the if statement is nested in a for
state. Each needs its own “end.” Also note that the script is how the program appears in
an M-file. The file is saved to the Matlab Work folder under the silly name “iffy.” To
execute it, I just type iffy in the Command Window and then ask for m and j, which are
the number of times the square is greater than or and less than 0>5 respectively.

Here’s the M-file program

m=0;j=0;k=100
 %k is the number of samples, m is how many squares are above .5 and j
is
 %how many are below.
for i=1:k
 x=rand;
if x^2 >.5
m=m+1;
else
j=j+1;
end
end
m
j

Here’s what I write in the Command window and what Matlab returns.
>> iffy
k =
 100
m =
 28
j =
 72

That’s all for now!

