Cross Section of the (n, 2n) Reaction in 12C in the Energy Interval 20-30 MeV

STEPHEN PADALINO, DANAE POLSIN, MEGAN RUSS, MICHAEL KRIEGER, MOLLIE BIEN-STOCK, DREW ELLISON, ANGELA SIMONE, COLLIN STILLMAN, SUNY Geneseo, MARK YULY, KEITH MANN, TYLER REYNOLDS, Houghton College, CRAIG SANGSTER, Laboratory for Laser Energetics — The behavior of the (n, 2n) reaction in 12C and other light nuclei is known with much less certainty than for heavy nuclei. The published cross section data for the 12C(n, 2n)11C reaction is bifurcated in the energy range of 20-30 MeV. An experiment to measure the 12C(n, 2n)11C cross section for these neutron energies has been performed using the Ohio University Tandem Accelerator. Deuterons from the accelerator struck a tritium foil releasing neutrons via the T(d, n)4He reaction. Deuteron bombarding energies between 3.3-8.7 MeV resulted in neutrons with energies between 20-26 MeV. The geometry of the experiment was chosen so that the incident neutron energy would not vary by more than 0.5 MeV across the graphite target. After neutron bombardment, the decay of the 11C nuclei by positron emission was measured with an array of NaI detectors to determine the activity of the carbon sample. The neutron fluence through the carbon was measured using a particle telescope to detect protons from the 1H(n, p) reaction in a polyethylene target, allowing the absolute cross section for the 12C(n, 2n)11C reaction to be determined. Funded in part by a grant from the DOE through the Laboratory for Laser Energetics.

Stephen Padalino
padalino@geneseo.edu
SUNY Geneseo

Date submitted: 02 Jul 2012
Electronic form version 1.4